Mutual Information-Based Feature Selection and Ensemble Learning for Classification

Chengming Qi, Zhangbing Zhou, Qun Wang, Lishuan Hu
{"title":"Mutual Information-Based Feature Selection and Ensemble Learning for Classification","authors":"Chengming Qi, Zhangbing Zhou, Qun Wang, Lishuan Hu","doi":"10.1109/IIKI.2016.81","DOIUrl":null,"url":null,"abstract":"Feature selection approaches aim to maximize relevance and minimize redundancy to the target by selecting a small subset of features in classification. This paper proposes a feature selection method based on mutual information (MI). We select a feature subset with minimal redundancy maximal relevance criteria. Multiple kernel learning (MKL) and ensemble learning (EL) have been applied in hyperspectral image classification. Our method applies Adaptive Boosting (AdaBoost) approach to learning multiple kernel-based classifier for multi-class classification problem. Classification experiments with a challenging Hyperspectral imaging (HSI) task demonstrate that our approach outperforms current state-of-the-art HSI classification methods.","PeriodicalId":371106,"journal":{"name":"2016 International Conference on Identification, Information and Knowledge in the Internet of Things (IIKI)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Identification, Information and Knowledge in the Internet of Things (IIKI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIKI.2016.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Feature selection approaches aim to maximize relevance and minimize redundancy to the target by selecting a small subset of features in classification. This paper proposes a feature selection method based on mutual information (MI). We select a feature subset with minimal redundancy maximal relevance criteria. Multiple kernel learning (MKL) and ensemble learning (EL) have been applied in hyperspectral image classification. Our method applies Adaptive Boosting (AdaBoost) approach to learning multiple kernel-based classifier for multi-class classification problem. Classification experiments with a challenging Hyperspectral imaging (HSI) task demonstrate that our approach outperforms current state-of-the-art HSI classification methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于互信息的特征选择与集成学习分类
特征选择方法的目的是通过在分类中选择一小部分特征来最大化目标的相关性和最小化冗余。提出了一种基于互信息(MI)的特征选择方法。我们选择一个具有最小冗余最大关联标准的特征子集。多核学习(MKL)和集成学习(EL)在高光谱图像分类中得到了应用。该方法采用自适应增强(AdaBoost)方法学习基于多核的分类器来解决多类分类问题。具有挑战性的高光谱成像(HSI)任务的分类实验表明,我们的方法优于当前最先进的高光谱成像分类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on the Evaluation of Product Quality Perceived Value Based on Text Mining and Fuzzy Comprehensive Evaluation A New Pre-copy Strategy for Live Migration of Virtual Machines Hbase Based Surveillance Video Processing, Storage and Retrieval Mutual Information-Based Feature Selection and Ensemble Learning for Classification Implicit Correlation Intensity Mining Based on the Monte Carlo Method with Attenuation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1