ALGORITMA PROPAGASI BALIK DALAM PENCARIAN POLA TRAINING TERBAIK UNTUK MENENTUKAN PREDIKSI PRODUKSI USAHA SONGKET SILUNGKANG DENGAN MENGGUNAKAN MATLAB

Rima Liana Gema, Devia Kartika
{"title":"ALGORITMA PROPAGASI BALIK DALAM PENCARIAN POLA TRAINING TERBAIK UNTUK MENENTUKAN PREDIKSI PRODUKSI USAHA SONGKET SILUNGKANG DENGAN MENGGUNAKAN MATLAB","authors":"Rima Liana Gema, Devia Kartika","doi":"10.30865/KOMIK.V2I1.908","DOIUrl":null,"url":null,"abstract":"One method used in Artificial Neural Networks is a backpropagation algorithm that is widely used in predicting and pattern recognition. Songket is one of the works of skilled hands of the original Silungkang craftsmen, Sawahlunto City, West Sumatra who have varied and unique patterns and motifs. This study uses a back propagation algorithm to find the best training pattern to facilitate the determination of the production prediction of Silungkang songket business using the Matlab application. The best training patterns obtained are expected to be used in data processing at the testing stage in order to obtain predictions for the production of songket business for the future. Keywords: production, songket, back propagation.","PeriodicalId":246167,"journal":{"name":"KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30865/KOMIK.V2I1.908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

One method used in Artificial Neural Networks is a backpropagation algorithm that is widely used in predicting and pattern recognition. Songket is one of the works of skilled hands of the original Silungkang craftsmen, Sawahlunto City, West Sumatra who have varied and unique patterns and motifs. This study uses a back propagation algorithm to find the best training pattern to facilitate the determination of the production prediction of Silungkang songket business using the Matlab application. The best training patterns obtained are expected to be used in data processing at the testing stage in order to obtain predictions for the production of songket business for the future. Keywords: production, songket, back propagation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用MATLAB对宋基丝质企业的生产预测预测
人工神经网络中使用的一种方法是反向传播算法,它广泛应用于预测和模式识别。松ket是西苏门答腊Sawahlunto市原始Silungkang工匠的熟练手工作品之一,他们有各种独特的图案和图案。本研究采用反向传播算法寻找最佳训练模式,以方便在Matlab应用程序中确定四龙康松鸡业务的产量预测。所获得的最佳训练模式预计将用于测试阶段的数据处理,以便对未来的歌曲制作业务进行预测。关键词:制作,歌曲,反向传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PENERAPAN ALGORITMA K-MEDOIDS CLUSTERING UNTUK PENGELOMPOKKAN PENYEBARAN DIARE DI KOTA MEDAN (STUDI KASUS: KANTOR DINAS KESEHATAN KOTA MEDAN) SISTEM PENDUKUNG KEPUTUSAN DALAM PENENTUAN PENERIMA RASTRA (BERAS SEJAHTERA) MENGGUNAKAN METODE SIMPLE ADDITIVE WEIGHTING (STUDI KASUS DESA KARANG BANGUN) SISTEM PENDUKUNG KEPUTUSAN REKOMENDASI PEMILIHAN SMARTPHONE TERBAIK MENGGUNAKAN METODE TOPSIS SISTEM PENDUKUNG KEPUTUSAN DALAM MENENTUKAN PRIORITAS PENDISTRIBUSIAN DARAH MENERAPKAN METODE THE EXTENDED PROMETHEE II PADA KANTOR PALANG MERAH INDONESIA(PMI) PERANCANGAN APLIKASI MOBILE CATALOG MODEL RAMBUT DENGAN MENERAPKAN ALGORITMA CROCHEMORE PERRIN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1