Minimax Probability Machine Regression for wireless traffic short term forecasting

Yu Kong, Xingwei Liu, Sheng Zhang
{"title":"Minimax Probability Machine Regression for wireless traffic short term forecasting","authors":"Yu Kong, Xingwei Liu, Sheng Zhang","doi":"10.1109/UKIWCWS.2009.5749407","DOIUrl":null,"url":null,"abstract":"Traffic can reflect the latent rules and characteristics of the wireless network. Through researching, we found that the more accurate traffic prediction, the higher efficiency, utilization rate of network bandwidth and QoS can be guaranteed. Therefore, how to construct predictive models of wireless network traffic exactly is a major research topic. In this paper, Minimax Probability Machine Regression (MPMR) is proposed for forecasting wireless network traffic in 802.11 networks. Experiment provides the performance of the forecasting model and gives some comparative analysis. It evidences that the model is feasible. And compared with SVM, MPMR can not only obtain an efficient and satisfactory prediction efficiency but also less errors than SVM.","PeriodicalId":198556,"journal":{"name":"2009 First UK-India International Workshop on Cognitive Wireless Systems (UKIWCWS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First UK-India International Workshop on Cognitive Wireless Systems (UKIWCWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKIWCWS.2009.5749407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Traffic can reflect the latent rules and characteristics of the wireless network. Through researching, we found that the more accurate traffic prediction, the higher efficiency, utilization rate of network bandwidth and QoS can be guaranteed. Therefore, how to construct predictive models of wireless network traffic exactly is a major research topic. In this paper, Minimax Probability Machine Regression (MPMR) is proposed for forecasting wireless network traffic in 802.11 networks. Experiment provides the performance of the forecasting model and gives some comparative analysis. It evidences that the model is feasible. And compared with SVM, MPMR can not only obtain an efficient and satisfactory prediction efficiency but also less errors than SVM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于极小极大概率机回归的无线流量短期预测
流量可以反映无线网络的潜在规律和特点。通过研究,我们发现流量预测越准确,网络带宽的效率、利用率和服务质量就越高。因此,如何准确地构建无线网络流量预测模型是一个重要的研究课题。本文提出了一种基于极小极大概率机回归(MPMR)的802.11无线网络流量预测方法。实验验证了预测模型的性能,并进行了对比分析。验证了该模型的可行性。与支持向量机相比,MPMR不仅能获得高效、满意的预测效率,而且误差小于支持向量机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clustered and leveled disjoint multipath routing algorithm for wireless sensor networks A new degree distribution for LT codes for broadcasting in ad-hoc network using network coding Multi hopping effect of Zigbee nodes coexisting with WLAN nodes in heterogeneous network environment Dynamic spectrum allocation technique in cognitive radio networks Minimax Probability Machine Regression for wireless traffic short term forecasting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1