Xudong Zhang, Yu Zhang, Xiaohua Chang, Yichen Wu, Changyong Pan
{"title":"Clipping Noise Estimation Based on Deep Complex Neural Network with Sparsity Constraint","authors":"Xudong Zhang, Yu Zhang, Xiaohua Chang, Yichen Wu, Changyong Pan","doi":"10.1109/VTC2020-Spring48590.2020.9128525","DOIUrl":null,"url":null,"abstract":"Clipping noise estimation and cancellation are essential in orthogonal frequency division multiplexing (OFDM) systems when clipping is performed to reduce the peak-to-average power ratio (PAPR). Motivated by the richer representational capacity of complex numbers and the fact that communication is a complex-valued problem, a novel clipping noise estimation scheme based on deep complex neural network is proposed in this paper. Specifically, the clipping noise is determined by a deep complex network, namely clipping noise estimation network (CNE-Net), such that the mean square error (MSE) and the sparsity of the estimated clipping noise are jointly optimized. Besides, an ordering based zero-forcing scheme is utilized to further ensure the sparsity of the estimated clipping noise. Simulation results show that the proposed CNE-Net shows comparable performance with the conventional decision-aided reconstruction (DAR) scheme and can achieve better performance than the one-iteration DAR scheme when the clipping noise is not sparse enough. In summary, the CNE-Net has a good capability to estimate the clipping noise from noise-affected features.","PeriodicalId":348099,"journal":{"name":"2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTC2020-Spring48590.2020.9128525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Clipping noise estimation and cancellation are essential in orthogonal frequency division multiplexing (OFDM) systems when clipping is performed to reduce the peak-to-average power ratio (PAPR). Motivated by the richer representational capacity of complex numbers and the fact that communication is a complex-valued problem, a novel clipping noise estimation scheme based on deep complex neural network is proposed in this paper. Specifically, the clipping noise is determined by a deep complex network, namely clipping noise estimation network (CNE-Net), such that the mean square error (MSE) and the sparsity of the estimated clipping noise are jointly optimized. Besides, an ordering based zero-forcing scheme is utilized to further ensure the sparsity of the estimated clipping noise. Simulation results show that the proposed CNE-Net shows comparable performance with the conventional decision-aided reconstruction (DAR) scheme and can achieve better performance than the one-iteration DAR scheme when the clipping noise is not sparse enough. In summary, the CNE-Net has a good capability to estimate the clipping noise from noise-affected features.