Outlier-Resilient Web Service QoS Prediction

Fanghua Ye, Zhiwei Lin, Chuan Chen, Zibin Zheng, Hong Huang
{"title":"Outlier-Resilient Web Service QoS Prediction","authors":"Fanghua Ye, Zhiwei Lin, Chuan Chen, Zibin Zheng, Hong Huang","doi":"10.1145/3442381.3449938","DOIUrl":null,"url":null,"abstract":"The proliferation of Web services makes it difficult for users to select the most appropriate one among numerous functionally identical or similar service candidates. Quality-of-Service (QoS) describes the non-functional characteristics of Web services, and it has become the key differentiator for service selection. However, users cannot invoke all Web services to obtain the corresponding QoS values due to high time cost and huge resource overhead. Thus, it is essential to predict unknown QoS values. Although various QoS prediction methods have been proposed, few of them have taken outliers into consideration, which may dramatically degrade the prediction performance. To overcome this limitation, we propose an outlier-resilient QoS prediction method in this paper. Our method utilizes Cauchy loss to measure the discrepancy between the observed QoS values and the predicted ones. Owing to the robustness of Cauchy loss, our method is resilient to outliers. We further extend our method to provide time-aware QoS prediction results by taking the temporal information into consideration. Finally, we conduct extensive experiments on both static and dynamic datasets. The results demonstrate that our method is able to achieve better performance than state-of-the-art baseline methods.","PeriodicalId":106672,"journal":{"name":"Proceedings of the Web Conference 2021","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Web Conference 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442381.3449938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

The proliferation of Web services makes it difficult for users to select the most appropriate one among numerous functionally identical or similar service candidates. Quality-of-Service (QoS) describes the non-functional characteristics of Web services, and it has become the key differentiator for service selection. However, users cannot invoke all Web services to obtain the corresponding QoS values due to high time cost and huge resource overhead. Thus, it is essential to predict unknown QoS values. Although various QoS prediction methods have been proposed, few of them have taken outliers into consideration, which may dramatically degrade the prediction performance. To overcome this limitation, we propose an outlier-resilient QoS prediction method in this paper. Our method utilizes Cauchy loss to measure the discrepancy between the observed QoS values and the predicted ones. Owing to the robustness of Cauchy loss, our method is resilient to outliers. We further extend our method to provide time-aware QoS prediction results by taking the temporal information into consideration. Finally, we conduct extensive experiments on both static and dynamic datasets. The results demonstrate that our method is able to achieve better performance than state-of-the-art baseline methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
异常弹性Web服务QoS预测
Web服务的激增使得用户很难在众多功能相同或相似的候选服务中选择最合适的服务。服务质量(QoS)描述了Web服务的非功能特征,它已成为区分服务选择的关键因素。但是,由于时间成本高,资源开销大,用户无法调用所有的Web服务来获得相应的QoS值。因此,预测未知的QoS值是必要的。虽然提出了各种QoS预测方法,但很少有方法考虑离群值,这可能会大大降低预测性能。为了克服这一局限性,本文提出了一种异常值弹性QoS预测方法。我们的方法利用柯西损失来度量观测到的QoS值与预测值之间的差异。由于柯西损失的鲁棒性,我们的方法对异常值具有弹性。我们进一步扩展了我们的方法,通过考虑时间信息来提供时间感知的QoS预测结果。最后,我们在静态和动态数据集上进行了广泛的实验。结果表明,我们的方法能够实现比最先进的基线方法更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
WiseTrans: Adaptive Transport Protocol Selection for Mobile Web Service Outlier-Resilient Web Service QoS Prediction Not All Features Are Equal: Discovering Essential Features for Preserving Prediction Privacy Unsupervised Lifelong Learning with Curricula The Structure of Toxic Conversations on Twitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1