N. Bartels, P. Allenspacher, W. Riede, H. Schröder, D. Wernham
{"title":"Removal of laser-induced contamination on ALADIN laser optics by UV/ozone cleaning","authors":"N. Bartels, P. Allenspacher, W. Riede, H. Schröder, D. Wernham","doi":"10.1117/12.2535772","DOIUrl":null,"url":null,"abstract":"The ESA satellite Aeolus was successfully launched into space in August 2018 and measures global wind profiles using the Atmospheric Laser Doppler Instrument (ALADIN). ALADIN features a high-power UV laser source emitting nanosecond pulses at a wavelength of 355 nm. A crucial step in the development of ALADIN was the mitigation of laser-induced contamination (LIC). In this work we assess the opportunity of removing LIC deposits using UV/ozone cleaning with a mercury lamp. We find that UV/ozone cleaning is a very effective tool for removing laser-induced molecular contamination induced by the volatile components of a material mix representative of the ALADIN laser. Furthermore, we show that optical surfaces on which a contamination is removed via UV/ozone cleaning behave similar to pristine optical surfaces with respect to their susceptibility to subsequent LIC as well as laser-induced damage. These results demonstrate that UV/ozone cleaning is a useful and safe way of cleaning optical surfaces after ground-based thermal vacuum/lifetime testing.","PeriodicalId":202227,"journal":{"name":"Laser Damage","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Damage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2535772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The ESA satellite Aeolus was successfully launched into space in August 2018 and measures global wind profiles using the Atmospheric Laser Doppler Instrument (ALADIN). ALADIN features a high-power UV laser source emitting nanosecond pulses at a wavelength of 355 nm. A crucial step in the development of ALADIN was the mitigation of laser-induced contamination (LIC). In this work we assess the opportunity of removing LIC deposits using UV/ozone cleaning with a mercury lamp. We find that UV/ozone cleaning is a very effective tool for removing laser-induced molecular contamination induced by the volatile components of a material mix representative of the ALADIN laser. Furthermore, we show that optical surfaces on which a contamination is removed via UV/ozone cleaning behave similar to pristine optical surfaces with respect to their susceptibility to subsequent LIC as well as laser-induced damage. These results demonstrate that UV/ozone cleaning is a useful and safe way of cleaning optical surfaces after ground-based thermal vacuum/lifetime testing.