Extending the subspace method for blind identification

L. Hoteit
{"title":"Extending the subspace method for blind identification","authors":"L. Hoteit","doi":"10.1109/ICOSP.1998.770222","DOIUrl":null,"url":null,"abstract":"The Moulines subspace procedure (Moulines et al., 1995), for blind identification leads to an inconsistent estimation when the order of the channel is unknown or when it is close to being unidentifiable. The non-robustness of the subspace approach to order over-estimation is considered a major limitation to its use in practical situations. This is usually the strongest argument in favour of linear prediction-based methods for channel identification. In this contribution, we propose a simple extension to the subspace approach which is robust to both over-estimation and lack of channel disparity.","PeriodicalId":145700,"journal":{"name":"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.1998.770222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Moulines subspace procedure (Moulines et al., 1995), for blind identification leads to an inconsistent estimation when the order of the channel is unknown or when it is close to being unidentifiable. The non-robustness of the subspace approach to order over-estimation is considered a major limitation to its use in practical situations. This is usually the strongest argument in favour of linear prediction-based methods for channel identification. In this contribution, we propose a simple extension to the subspace approach which is robust to both over-estimation and lack of channel disparity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扩展子空间盲识别方法
Moulines子空间过程(Moulines et al., 1995)用于盲识别,当信道的阶数未知或接近不可识别时,会导致估计不一致。序过估计子空间方法的非鲁棒性被认为是限制其在实际应用中的一个主要问题。这通常是支持基于线性预测的通道识别方法的最有力的论据。在这篇文章中,我们提出了一种简单的子空间方法的扩展,该方法对信道过估计和信道视差缺乏都具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new estimation formula for minimum filter length of optimum FIR digital filters A fuzzy associative memory pattern classifier Randomized method for planar motion estimation and matching points A robust speech feature-perceptive scalogram based on wavelet analysis A new class of feature-orientated motion estimation for motion pictures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1