Systematic Evaluation of A Centralized Non-Recurrent Queue Management System

Hao Yang, Y. Farid, K. Oguchi
{"title":"Systematic Evaluation of A Centralized Non-Recurrent Queue Management System","authors":"Hao Yang, Y. Farid, K. Oguchi","doi":"10.1109/iv51971.2022.9827022","DOIUrl":null,"url":null,"abstract":"Vehicle incidents or anomalous slow/stopping vehicles will generate non-recurrent queues and partially block roads. The queues will result in unbalanced lane-level traffic, and the large speed differences among lanes increase the difficulty for the queued vehicles to make lane changes to avoid downstream congestion. In this paper, a centralized non-recurrent queue management (C-NRQM) system is implemented to assist connected vehicles around non-recurrent queues with advisory speed and lane changing instructions to mitigate road congestion as well as to minimize the travel time delay and risk of collisions of all vehicles. A systematic evaluation of the system is conducted with microscopic traffic simulations to assess its mobility and safety benefits under different market penetration rates (MPRs) of connected vehicles. The socially responsibility of the system on the fairness of all road users and its performance under a competing environment with different connected vehicle applications are also evaluated to illustrate its real-world implementations in the future transportation systems. The system can reduces travel time delay by more than 80% for road with medium congestion, and more than 50% for more congested roads. Also, the system evaluation demonstrates that the centralized management has a distinct advantage on improving network performance at high MPRs of connected vehicles and eliminating the negative impact of the competition of different mobility services","PeriodicalId":184622,"journal":{"name":"2022 IEEE Intelligent Vehicles Symposium (IV)","volume":"234 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iv51971.2022.9827022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Vehicle incidents or anomalous slow/stopping vehicles will generate non-recurrent queues and partially block roads. The queues will result in unbalanced lane-level traffic, and the large speed differences among lanes increase the difficulty for the queued vehicles to make lane changes to avoid downstream congestion. In this paper, a centralized non-recurrent queue management (C-NRQM) system is implemented to assist connected vehicles around non-recurrent queues with advisory speed and lane changing instructions to mitigate road congestion as well as to minimize the travel time delay and risk of collisions of all vehicles. A systematic evaluation of the system is conducted with microscopic traffic simulations to assess its mobility and safety benefits under different market penetration rates (MPRs) of connected vehicles. The socially responsibility of the system on the fairness of all road users and its performance under a competing environment with different connected vehicle applications are also evaluated to illustrate its real-world implementations in the future transportation systems. The system can reduces travel time delay by more than 80% for road with medium congestion, and more than 50% for more congested roads. Also, the system evaluation demonstrates that the centralized management has a distinct advantage on improving network performance at high MPRs of connected vehicles and eliminating the negative impact of the competition of different mobility services
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
集中式非循环队列管理系统的系统评价
车辆意外或车辆异常缓慢/停车,会造成非经常性的排队现象及部分阻塞道路。队列会导致车道级交通不平衡,车道间的速度差异较大,增加了排队车辆变道以避免下游拥堵的难度。本文实现了一种集中式非经常性队列管理(C-NRQM)系统,通过建议速度和变道指令,帮助非经常性队列周围的联网车辆缓解道路拥堵,并最大限度地降低所有车辆的行驶时间延迟和碰撞风险。通过微观交通模拟对该系统进行了系统评估,评估了在不同的联网汽车市场渗透率(mpr)下该系统的移动性和安全性效益。该系统对所有道路使用者公平的社会责任,以及在不同联网车辆应用的竞争环境下的表现,也被评估,以说明其在未来交通系统中的实际实现。对于中度拥堵的道路,该系统可以减少80%以上的旅行延误,对于更拥堵的道路,该系统可以减少50%以上的旅行延误。系统评价表明,集中式管理在提高网联车辆高mpr时的网络性能和消除不同移动服务竞争的负面影响方面具有明显优势
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Conflict Mitigation for Cooperative Driving Control of Intelligent Vehicles Detecting vehicles in the dark in urban environments - A human benchmark A Sequential Decision-theoretic Method for Detecting Mobile Robots Localization Failures Scene Spatio-Temporal Graph Convolutional Network for Pedestrian Intention Estimation What Can be Seen is What You Get: Structure Aware Point Cloud Augmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1