Analysis of the least median of squares estimator for computer vision applications

D. Mintz, P. Meer, A. Rosenfeld
{"title":"Analysis of the least median of squares estimator for computer vision applications","authors":"D. Mintz, P. Meer, A. Rosenfeld","doi":"10.1109/CVPR.1992.223126","DOIUrl":null,"url":null,"abstract":"The robust least-median-of-squares (LMedS) estimator, which can recover a model representing only half the data points, was recently introduced in computer vision. Image data, however, is usually also corrupted by a zero-mean random process (noise) accounting for the measurement uncertainties. It is shown that in the presence of significant noise, LMedS loses its high breakdown point property. A different, two-stage approach in which the uncertainty due to noise is reduced before applying the simplest LMedS procedure is proposed. The superior performance of the technique is proved by comparative graphs.<<ETX>>","PeriodicalId":325476,"journal":{"name":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1992.223126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

The robust least-median-of-squares (LMedS) estimator, which can recover a model representing only half the data points, was recently introduced in computer vision. Image data, however, is usually also corrupted by a zero-mean random process (noise) accounting for the measurement uncertainties. It is shown that in the presence of significant noise, LMedS loses its high breakdown point property. A different, two-stage approach in which the uncertainty due to noise is reduced before applying the simplest LMedS procedure is proposed. The superior performance of the technique is proved by comparative graphs.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最小二乘中值估计在计算机视觉中的应用分析
鲁棒最小二乘中值估计器(lmed)是最近在计算机视觉领域被引入的一种方法,它可以恢复仅代表一半数据点的模型。然而,由于测量的不确定性,图像数据通常也会被零均值随机过程(噪声)所破坏。结果表明,在噪声较大的情况下,lmed失去了高击穿点的特性。提出了一种不同的两阶段方法,该方法在应用最简单的lmed过程之前降低了噪声引起的不确定性。对比图证明了该技术的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Motion trajectories An heterogeneous M-SIMD architecture for Kalman filter controlled processing of image sequences Recognizing 3D objects from 2D images: an error analysis On the derivation of geometric constraints in stereo Computing stereo correspondences in the presence of narrow occluding objects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1