A Scheme for Detecting Malicious Nodes in UAV Clusters Based on Community Division

Runhui Zhao, Sijing Wang, Hong Wen
{"title":"A Scheme for Detecting Malicious Nodes in UAV Clusters Based on Community Division","authors":"Runhui Zhao, Sijing Wang, Hong Wen","doi":"10.1109/ICNISC57059.2022.00053","DOIUrl":null,"url":null,"abstract":"With the wide use of UAV clusters, malicious attacks against UAV nodes are becoming more and more frequent. Aiming at the problem of malicious node detection in large-scale UAV clusters, this paper proposes a malicious node detection scheme based on community division. Firstly, the Leiden community discovery algorithm divides the flight cluster into multiple communities. Then, this paper presents a combined node importance evaluation algorithm using UAV Communication topology and control topology to evaluate the importance of cluster nodes. Finally, this paper proposes a method to select community leader nodes by using the importance, trust degree and residual power of UAV community nodes.","PeriodicalId":286467,"journal":{"name":"2022 8th Annual International Conference on Network and Information Systems for Computers (ICNISC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th Annual International Conference on Network and Information Systems for Computers (ICNISC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNISC57059.2022.00053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the wide use of UAV clusters, malicious attacks against UAV nodes are becoming more and more frequent. Aiming at the problem of malicious node detection in large-scale UAV clusters, this paper proposes a malicious node detection scheme based on community division. Firstly, the Leiden community discovery algorithm divides the flight cluster into multiple communities. Then, this paper presents a combined node importance evaluation algorithm using UAV Communication topology and control topology to evaluate the importance of cluster nodes. Finally, this paper proposes a method to select community leader nodes by using the importance, trust degree and residual power of UAV community nodes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于社区划分的无人机集群恶意节点检测方案
随着无人机集群的广泛应用,针对无人机节点的恶意攻击也越来越频繁。针对大规模无人机集群中的恶意节点检测问题,提出了一种基于社区划分的恶意节点检测方案。首先,Leiden社区发现算法将飞行集群划分为多个社区;然后,提出了一种利用无人机通信拓扑和控制拓扑对集群节点重要性进行综合评估的节点重要性评估算法。最后,本文提出了一种利用无人机社区节点的重要性、信任度和剩余功率来选择社区领导节点的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New Untrained Emitter Detection Based on SK-GAND Network Design of High Efficiency Photovoltaic Sound Barrier Study on Intelligent Heterogeneous Computing Technology for Reliable-critical Application Exploring the Seismogenic Structure of the 2016 Yanhu Earthquake Swarm Using Template-based Recognition Techniques The Simulation of the Signal Detection Algorithm in MIMO System Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1