Visualization of Supercritical Carbon Dioxide Flow Through a Converging-Diverging Nozzle

C. Lim, G. Pathikonda, Sandeep R. Pidaparti, Devesh Ranjan
{"title":"Visualization of Supercritical Carbon Dioxide Flow Through a Converging-Diverging Nozzle","authors":"C. Lim, G. Pathikonda, Sandeep R. Pidaparti, Devesh Ranjan","doi":"10.1115/gt2019-91691","DOIUrl":null,"url":null,"abstract":"\n Supercritical carbon dioxide (sCO2) power cycles have the potential to offer a higher plant efficiency than the traditional Rankine superheated/supercritical steam cycle or Helium Brayton cycles. The most attractive characteristic of sCO2 is that the fluid density is high near the critical point, allowing compressors to consume less power than conventional gas Brayton cycles and maintain a smaller turbomachinery size. Despite these advantages, there still exist unsolved challenges in design and operation of sCO2 compressors near the critical point. Drastic changes in fluid properties near the critical point and the high compressibility of the fluid pose several challenges. Operating a sCO2 compressor near the critical point has potential to produce two phase flow, which can be detrimental to turbomachinery performance. To mimic the expanding regions of compressor blades, flow through a converging-diverging nozzle is investigated. Pressure profiles along the nozzle are recorded and presented for operating conditions near the critical point. Using high speed shadowgraph images, onset and growth of condensation is captured along the nozzle. Pressure profiles were calculated using a one-dimensional homogeneous equilibrium model and compared with experimental data.","PeriodicalId":412490,"journal":{"name":"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2019-91691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Supercritical carbon dioxide (sCO2) power cycles have the potential to offer a higher plant efficiency than the traditional Rankine superheated/supercritical steam cycle or Helium Brayton cycles. The most attractive characteristic of sCO2 is that the fluid density is high near the critical point, allowing compressors to consume less power than conventional gas Brayton cycles and maintain a smaller turbomachinery size. Despite these advantages, there still exist unsolved challenges in design and operation of sCO2 compressors near the critical point. Drastic changes in fluid properties near the critical point and the high compressibility of the fluid pose several challenges. Operating a sCO2 compressor near the critical point has potential to produce two phase flow, which can be detrimental to turbomachinery performance. To mimic the expanding regions of compressor blades, flow through a converging-diverging nozzle is investigated. Pressure profiles along the nozzle are recorded and presented for operating conditions near the critical point. Using high speed shadowgraph images, onset and growth of condensation is captured along the nozzle. Pressure profiles were calculated using a one-dimensional homogeneous equilibrium model and compared with experimental data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超临界二氧化碳通过会聚-发散喷嘴的可视化
超临界二氧化碳(sCO2)动力循环有可能提供比传统的Rankine过热/超临界蒸汽循环或氦布雷顿循环更高的工厂效率。sCO2最吸引人的特点是,流体密度在临界点附近很高,这使得压缩机比传统的气体布雷顿循环消耗更少的功率,并保持更小的涡轮机械尺寸。尽管有这些优势,但超临界超临界压缩机在临界点附近的设计和运行中仍存在未解决的挑战。在临界点附近流体性质的剧烈变化和流体的高压缩性带来了一些挑战。在临界点附近运行sCO2压缩机有可能产生两相流,这可能对涡轮机械性能有害。为了模拟压气机叶片的膨胀区域,研究了通过会聚-发散喷管的流动。沿着喷嘴的压力分布被记录下来,并呈现在临界点附近的操作条件下。利用高速阴影图像,沿着喷嘴捕获冷凝的开始和生长。采用一维均匀平衡模型计算了压力分布,并与实验数据进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Use of Departure Functions to Estimate Deviation of a Real Gas From the Ideal Gas Model Design Considerations for High Pressure Boil-Off Gas (BOG) Centrifugal Compressors With Synchronous Motor Drives in LNG Liquefaction Plants An Overview of Initial Operational Experience With the Closed-Loop sCO2 Test Facility at Cranfield University Wet Gas Compressor Modeling and Performance Scaling The Effect of Blade Deflections on the Torsional Dynamic of a Wind Turbine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1