Reactive power control of solar photovoltaic inverters for grid code compliance support

M. Zainuddin, Frengki Eka Putra Surusa, Muhammad Asri, Aprian Mokoagow
{"title":"Reactive power control of solar photovoltaic inverters for grid code compliance support","authors":"M. Zainuddin, Frengki Eka Putra Surusa, Muhammad Asri, Aprian Mokoagow","doi":"10.11591/ijape.v12.i3.pp300-311","DOIUrl":null,"url":null,"abstract":"The compensation of reactive power in smart inverters is one solution to address the issue of voltage violations in the distribution network due to the penetration of solar photovoltaic power generation. However, options for reactive power control are limited during variations in irradiation and daily load on the feeder. This study aims to investigate the performance difference between four reactive power control techniques including Q(V) control, Q(P) control, fixed Q-Var, and fixed power factor (PF) available in smart inverters to reduce voltage violations due to PV integration and comply with the grid-code. Three-phase balanced power flow was simulated in a medium voltage distribution network (MVDN) considering the reactive power control mode of the inverter under variations in solar radiation and daily load. The results showed that the Q(V) control was more effective in improving distribution feeder voltage than other techniques and showed its compliance with the grid-code. The limiting setting point for var injection or power factor limit should be proportional to the daily grid load profile.","PeriodicalId":340072,"journal":{"name":"International Journal of Applied Power Engineering (IJAPE)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Power Engineering (IJAPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijape.v12.i3.pp300-311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The compensation of reactive power in smart inverters is one solution to address the issue of voltage violations in the distribution network due to the penetration of solar photovoltaic power generation. However, options for reactive power control are limited during variations in irradiation and daily load on the feeder. This study aims to investigate the performance difference between four reactive power control techniques including Q(V) control, Q(P) control, fixed Q-Var, and fixed power factor (PF) available in smart inverters to reduce voltage violations due to PV integration and comply with the grid-code. Three-phase balanced power flow was simulated in a medium voltage distribution network (MVDN) considering the reactive power control mode of the inverter under variations in solar radiation and daily load. The results showed that the Q(V) control was more effective in improving distribution feeder voltage than other techniques and showed its compliance with the grid-code. The limiting setting point for var injection or power factor limit should be proportional to the daily grid load profile.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
太阳能光伏逆变器无功功率控制为电网规范符合性提供支持
智能逆变器中的无功功率补偿是解决太阳能光伏发电渗透导致配电网电压违规问题的一种解决方案。然而,无功功率控制的选择是有限的,在辐照和馈线上的日常负荷的变化。本研究旨在研究智能逆变器中可用的四种无功功率控制技术(Q(V)控制、Q(P)控制、固定Q- var和固定功率因数(PF))之间的性能差异,以减少由于光伏集成而导致的电压违规并符合电网法规。考虑逆变器无功功率控制方式,对中压配电网在太阳辐射和日负荷变化情况下的三相平衡潮流进行了仿真。结果表明,Q(V)控制比其他控制方法更能有效地改善配电馈线电压,且符合电网规范。无功注入或功率因数限制的限制设定点应与每日电网负荷剖面成正比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fundamental frequency switching strategies of a seven level hybrid cascaded H-bridge multilevel inverter Recent research and developments of degradation assessment and its diagnosis methods for solar PV plant: a review Investigating the effects of corrosion parameters on the surface resistivity of transformer’s insulating paper using a two-level factorial design Maximum power optimization of a direct-drive wind turbine connected to PMSG using multi-objective genetic algorithm A wireless-power and data-transfer using inductive RF link and ASK modulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1