Aashish Gottipati, A. Stewart, Jiawen Song, Qianlang Chen
{"title":"FedRAN","authors":"Aashish Gottipati, A. Stewart, Jiawen Song, Qianlang Chen","doi":"10.1145/3472735.3473392","DOIUrl":null,"url":null,"abstract":"In this paper, we propose FedRAN, a mobile edge, federated learning system that incorporates differential privacy to improve the privacy integrity of sensitive edge information, preventing adversarial entities from exploiting the network interactions within a federated ecosystem to access private edge data, while tapping into the vast amounts of data generated from distributed endpoints. We deploy and evaluate FedRAN in a real controlled radio-frequency LTE environment, as opposed to a simulated one. We show that FedRAN's distributed model outperforms locally-constrained models on the MNIST handwritten digits dataset. Additionally, we explore a variety of differential privacy settings, in an effort, to enable a privacy preserving, large scale mobile edge computing ecosystem. To our knowledge, our work is the first evaluation of a federated learning system within a controlled radio-frequency LTE environment.","PeriodicalId":130203,"journal":{"name":"Proceedings of the 4th FlexNets Workshop on Flexible Networks Artificial Intelligence Supported Network Flexibility and Agility","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th FlexNets Workshop on Flexible Networks Artificial Intelligence Supported Network Flexibility and Agility","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3472735.3473392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper, we propose FedRAN, a mobile edge, federated learning system that incorporates differential privacy to improve the privacy integrity of sensitive edge information, preventing adversarial entities from exploiting the network interactions within a federated ecosystem to access private edge data, while tapping into the vast amounts of data generated from distributed endpoints. We deploy and evaluate FedRAN in a real controlled radio-frequency LTE environment, as opposed to a simulated one. We show that FedRAN's distributed model outperforms locally-constrained models on the MNIST handwritten digits dataset. Additionally, we explore a variety of differential privacy settings, in an effort, to enable a privacy preserving, large scale mobile edge computing ecosystem. To our knowledge, our work is the first evaluation of a federated learning system within a controlled radio-frequency LTE environment.