Big Data Retrieval using HDFS with LZO Compression

T. Prasanth, K. Aarthi, M. Gunasekaran
{"title":"Big Data Retrieval using HDFS with LZO Compression","authors":"T. Prasanth, K. Aarthi, M. Gunasekaran","doi":"10.1109/ICACCE46606.2019.9079993","DOIUrl":null,"url":null,"abstract":"Any type of organization depends on accurate data analytics to make better decisions. Users of these organizations request access from different resources like processes or executors. When processing this request of users, the data retrieval speed is low and also data is inaccurate for some conditions. To solve this issue, a system may be proposed having Hadoop Distributed File system (HDFS) with Lempel-Ziv-Oberhumer(LZO). The first step in the proposed technique is to retrieve and mine the data from respective database. The next step is to cluster the extracted data and optimize it using HDFS and LZO compression method. In the last step, if the compressed data is found similar to user requested data, the final data has to be visualized to the user. The proposed retrieving process in big data gives better performance and reduced execution time.","PeriodicalId":317123,"journal":{"name":"2019 International Conference on Advances in Computing and Communication Engineering (ICACCE)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Advances in Computing and Communication Engineering (ICACCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACCE46606.2019.9079993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Any type of organization depends on accurate data analytics to make better decisions. Users of these organizations request access from different resources like processes or executors. When processing this request of users, the data retrieval speed is low and also data is inaccurate for some conditions. To solve this issue, a system may be proposed having Hadoop Distributed File system (HDFS) with Lempel-Ziv-Oberhumer(LZO). The first step in the proposed technique is to retrieve and mine the data from respective database. The next step is to cluster the extracted data and optimize it using HDFS and LZO compression method. In the last step, if the compressed data is found similar to user requested data, the final data has to be visualized to the user. The proposed retrieving process in big data gives better performance and reduced execution time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于LZO压缩的HDFS大数据检索
任何类型的组织都依赖于准确的数据分析来做出更好的决策。这些组织的用户从不同的资源(如流程或执行者)请求访问。在处理用户的这一请求时,数据检索速度较慢,而且在某些情况下数据不准确。为了解决这个问题,一个系统可能会被提议使用具有LZO (Lempel-Ziv-Oberhumer)特性的HDFS (Hadoop Distributed File system)。该技术的第一步是从各自的数据库中检索和挖掘数据。下一步是将提取的数据进行聚类,并使用HDFS和LZO压缩方法进行优化。在最后一步中,如果发现压缩数据与用户请求的数据相似,则必须将最终数据可视化给用户。提出的大数据检索流程具有更好的性能和更短的执行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Big Data Retrieval using HDFS with LZO Compression Robustness Evaluation of Cyber Physical Systems through Network Protocol Fuzzing Efficient Minutiae Matching Algorithm for Fingerprint Recognition A Novel Noise Removal in Digital Mammograms based on Statistical Algorithms Estimation of maximum range for underwater optical communication using PIN and avalanche photodetectors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1