Outlier Detection Using Inductive Logic Programming

F. Angiulli, Fabio Fassetti
{"title":"Outlier Detection Using Inductive Logic Programming","authors":"F. Angiulli, Fabio Fassetti","doi":"10.1109/ICDM.2009.127","DOIUrl":null,"url":null,"abstract":"We present a novel definition of outlier in the context of inductive logic programming. Given a set of positive and negative examples, the definition aims at singling out the examples showing anomalous behavior. We note that the task here pursued is different from noise removal, and, in fact, the anomalous observations we discover are different in nature from noisy ones. We discuss pecularities of the novel approach, present an algorithm for detecting outliers, discuss some examples of knowledge mined, and compare it with alternative approaches.","PeriodicalId":247645,"journal":{"name":"2009 Ninth IEEE International Conference on Data Mining","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2009.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We present a novel definition of outlier in the context of inductive logic programming. Given a set of positive and negative examples, the definition aims at singling out the examples showing anomalous behavior. We note that the task here pursued is different from noise removal, and, in fact, the anomalous observations we discover are different in nature from noisy ones. We discuss pecularities of the novel approach, present an algorithm for detecting outliers, discuss some examples of knowledge mined, and compare it with alternative approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用归纳逻辑编程进行离群值检测
在归纳逻辑规划的背景下,提出了离群值的新定义。给定一组积极和消极的例子,该定义旨在挑出表现出异常行为的例子。我们注意到,这里所追求的任务不同于噪声去除,事实上,我们发现的异常观测在性质上不同于噪声观测。我们讨论了新方法的特点,提出了一种检测异常值的算法,讨论了一些知识挖掘的例子,并将其与其他方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Probabilistic Similarity Query on Dimension Incomplete Data Outlier Detection Using Inductive Logic Programming GSML: A Unified Framework for Sparse Metric Learning Naive Bayes Classification of Uncertain Data PEGASUS: A Peta-Scale Graph Mining System Implementation and Observations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1