Bayesian Optimization For Choice Data

A. Benavoli, Dario Azzimonti, D. Piga
{"title":"Bayesian Optimization For Choice Data","authors":"A. Benavoli, Dario Azzimonti, D. Piga","doi":"10.1145/3583133.3596324","DOIUrl":null,"url":null,"abstract":"In this work we introduce a new framework for multi-objective Bayesian optimisation where the multi-objective functions can only be accessed via choice judgements, such as \"I pick options x1, x2, x3 among this set of five options x1, x2, ..., x5\". The fact that the option x4 is rejected means that there is at least one option among the selected ones x1, x2, x3 that I strictly prefer over x4 (but I do not have to specify which one). We assume that there is a latent vector function u for some dimension d which embeds the options into the real vector space of dimension d, so that the choice set can be represented through a Pareto set of non-dominated options. By placing a Gaussian process prior on u and by using a novel likelihood model for choice data, we derive a surrogate model for the latent vector function. We then propose two novel acquisition functions to solve the multi-objective Bayesian optimisation from choice data.","PeriodicalId":422029,"journal":{"name":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3583133.3596324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this work we introduce a new framework for multi-objective Bayesian optimisation where the multi-objective functions can only be accessed via choice judgements, such as "I pick options x1, x2, x3 among this set of five options x1, x2, ..., x5". The fact that the option x4 is rejected means that there is at least one option among the selected ones x1, x2, x3 that I strictly prefer over x4 (but I do not have to specify which one). We assume that there is a latent vector function u for some dimension d which embeds the options into the real vector space of dimension d, so that the choice set can be represented through a Pareto set of non-dominated options. By placing a Gaussian process prior on u and by using a novel likelihood model for choice data, we derive a surrogate model for the latent vector function. We then propose two novel acquisition functions to solve the multi-objective Bayesian optimisation from choice data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
选择数据的贝叶斯优化
在这项工作中,我们引入了一个新的多目标贝叶斯优化框架,其中多目标函数只能通过选择判断来访问,例如“我在这五个选项x1, x2,…中选择选项x1, x2, x3”。, x5”。选项x4被拒绝的事实意味着,在被选中的选项x1, x2, x3中,至少有一个选项我严格地偏好于x4(但我不必指定是哪一个)。我们假设存在一个d维的潜在向量函数u,它将选项嵌入到d维的实向量空间中,因此选择集可以通过非支配选项的帕累托集来表示。通过在u上放置高斯过程先验,并通过对选择数据使用新的似然模型,我们推导出潜在向量函数的代理模型。然后,我们提出了两个新的获取函数来解决选择数据的多目标贝叶斯优化问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Graph Q-learning Assisted Ant Colony Optimization for Vehicle Routing Problems with Time Windows Iterative Structure-Based Genetic Programming for Neural Architecture Search Bayesian Optimization For Choice Data Exploring Adaptive Components of SOMA Evaluation of the impact of various modifications to CMA-ES that facilitate its theoretical analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1