The Empirical Research on Volatility Measurement Model Based Multiplicative Error Model

Yuling Ma, Pin Guo, Yuan Zhao
{"title":"The Empirical Research on Volatility Measurement Model Based Multiplicative Error Model","authors":"Yuling Ma, Pin Guo, Yuan Zhao","doi":"10.1109/CSO.2014.156","DOIUrl":null,"url":null,"abstract":"Volatility is a very important factor of measuring financial risk. This paper introduces the volatility measurement method of high frequency financial time series involving the nonnegative-Multiplicative Error Model. This paper takes the high frequency data of HS300 index of Chinese stock market as the research object, building the TARCH model according to leverage, and uses the \"realized volatility\" to build ARFIMA model, multiplicative error model respectively, then carries on the comparative analysis on accuracy after using the three models to predict with the mean square error method. The analysis results show that the multiplicative error model gives the best prediction effects, and ARFIMA model is the second.","PeriodicalId":174800,"journal":{"name":"2014 Seventh International Joint Conference on Computational Sciences and Optimization","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Seventh International Joint Conference on Computational Sciences and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSO.2014.156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Volatility is a very important factor of measuring financial risk. This paper introduces the volatility measurement method of high frequency financial time series involving the nonnegative-Multiplicative Error Model. This paper takes the high frequency data of HS300 index of Chinese stock market as the research object, building the TARCH model according to leverage, and uses the "realized volatility" to build ARFIMA model, multiplicative error model respectively, then carries on the comparative analysis on accuracy after using the three models to predict with the mean square error method. The analysis results show that the multiplicative error model gives the best prediction effects, and ARFIMA model is the second.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于乘数误差模型的波动率度量模型实证研究
波动性是衡量金融风险的一个重要因素。本文介绍了一种基于非负乘误差模型的高频金融时间序列波动率测量方法。本文以中国股市HS300指数的高频数据为研究对象,根据杠杆作用构建TARCH模型,并利用“已实现波动率”分别构建ARFIMA模型、乘法误差模型,然后用均方误差法对三种模型进行预测后的精度进行对比分析。分析结果表明,乘法误差模型的预测效果最好,ARFIMA模型次之。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Readability to Financial Report: A Comparative Study of Chinese and Foreign Countries Case-Based Reasoning Algorithm Based on Qualitative Causality The Empirical Research on Volatility Measurement Model Based Multiplicative Error Model Auxiliary Function Based Independent Vector Analysis with Spatial Initialization for Frequency Domain Speech Separation Integrating Relative Coordinates with Simulated Annealing to Solve a Traveling Salesman Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1