{"title":"Deciphering Dual Porosity Carbonates Using Multiphysics Modeling and Inversion","authors":"A. Shahin, M. Myers, L. Hathon","doi":"10.3997/2214-4609.201903112","DOIUrl":null,"url":null,"abstract":"Summary Very often rock physics modeling and formation evaluation are treated as independent tasks. This is attributed to several causes: lack of communication between petrophysicists and seismic analysts (organizational silos), insistence on using simple linear or quasi-linear models in well log interpretation, and lack of core and fluid samples to provide calibrated rock matrix and fluid properties such as salinity, critical porosity, Archie’s parameters, etc. The proposed multiphysics modeling and inversion algorithm will make use of conventional well logs (sonic, density, and resistivity) to invert for pore-type, porosity, saturation, rock matrix properties, salinity, and other model parameters. The developed multiphysics rock models will assist petrophysicists and seismic analysts to identify and distinguish carbonate’s facies characteristics from well log and pre-stack seismic data.","PeriodicalId":237705,"journal":{"name":"Third EAGE WIPIC Workshop: Reservoir Management in Carbonates","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Third EAGE WIPIC Workshop: Reservoir Management in Carbonates","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.201903112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Summary Very often rock physics modeling and formation evaluation are treated as independent tasks. This is attributed to several causes: lack of communication between petrophysicists and seismic analysts (organizational silos), insistence on using simple linear or quasi-linear models in well log interpretation, and lack of core and fluid samples to provide calibrated rock matrix and fluid properties such as salinity, critical porosity, Archie’s parameters, etc. The proposed multiphysics modeling and inversion algorithm will make use of conventional well logs (sonic, density, and resistivity) to invert for pore-type, porosity, saturation, rock matrix properties, salinity, and other model parameters. The developed multiphysics rock models will assist petrophysicists and seismic analysts to identify and distinguish carbonate’s facies characteristics from well log and pre-stack seismic data.