Semantics Derived Automatically from Language Corpora Contain Human-like Moral Choices

Sophie F. Jentzsch, P. Schramowski, C. Rothkopf, K. Kersting
{"title":"Semantics Derived Automatically from Language Corpora Contain Human-like Moral Choices","authors":"Sophie F. Jentzsch, P. Schramowski, C. Rothkopf, K. Kersting","doi":"10.1145/3306618.3314267","DOIUrl":null,"url":null,"abstract":"Allowing machines to choose whether to kill humans would be devastating for world peace and security. But how do we equip machines with the ability to learn ethical or even moral choices? Here, we show that applying machine learning to human texts can extract deontological ethical reasoning about \"right\" and \"wrong\" conduct. We create a template list of prompts and responses, which include questions, such as \"Should I kill people?\", \"Should I murder people?\", etc. with answer templates of \"Yes/no, I should (not).\" The model's bias score is now the difference between the model's score of the positive response (\"Yes, I should'') and that of the negative response (\"No, I should not\"). For a given choice overall, the model's bias score is the sum of the bias scores for all question/answer templates with that choice. We ran different choices through this analysis using a Universal Sentence Encoder. Our results indicate that text corpora contain recoverable and accurate imprints of our social, ethical and even moral choices. Our method holds promise for extracting, quantifying and comparing sources of moral choices in culture, including technology.","PeriodicalId":418125,"journal":{"name":"Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3306618.3314267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

Allowing machines to choose whether to kill humans would be devastating for world peace and security. But how do we equip machines with the ability to learn ethical or even moral choices? Here, we show that applying machine learning to human texts can extract deontological ethical reasoning about "right" and "wrong" conduct. We create a template list of prompts and responses, which include questions, such as "Should I kill people?", "Should I murder people?", etc. with answer templates of "Yes/no, I should (not)." The model's bias score is now the difference between the model's score of the positive response ("Yes, I should'') and that of the negative response ("No, I should not"). For a given choice overall, the model's bias score is the sum of the bias scores for all question/answer templates with that choice. We ran different choices through this analysis using a Universal Sentence Encoder. Our results indicate that text corpora contain recoverable and accurate imprints of our social, ethical and even moral choices. Our method holds promise for extracting, quantifying and comparing sources of moral choices in culture, including technology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
语料库自动衍生的语义包含类似人类的道德选择
允许机器选择是否杀死人类将对世界和平与安全造成毁灭性的破坏。但我们如何让机器具备学习伦理甚至道德选择的能力呢?在这里,我们展示了将机器学习应用于人类文本可以提取关于“正确”和“错误”行为的道义伦理推理。我们创建了一个提示和回答的模板列表,其中包括诸如“我应该杀人吗?”,“我应该杀人吗?”等问题,答案模板为“是/否,我应该(不)”。模型的偏差分数现在是模型的积极反应(“是的,我应该”)和消极反应(“不,我不应该”)的分数之差。对于给定的总体选择,模型的偏差分数是该选择的所有问题/答案模板的偏差分数的总和。我们使用通用句子编码器对不同的选项进行分析。我们的研究结果表明,文本语料库包含了我们的社会、伦理甚至道德选择的可恢复和准确的印记。我们的方法有望提取、量化和比较文化(包括技术)中道德选择的来源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semantics Derived Automatically from Language Corpora Contain Human-like Moral Choices Requirements for an Artificial Agent with Norm Competence Enabling Effective Transparency: Towards User-Centric Intelligent Systems Killer Robots and Human Dignity The Value of Trustworthy AI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1