Partially observed objects localization with PCA and KPCA models

B. Romaniuk, V. Guilloux, M. Desvignes, M. Deshayes
{"title":"Partially observed objects localization with PCA and KPCA models","authors":"B. Romaniuk, V. Guilloux, M. Desvignes, M. Deshayes","doi":"10.1109/IAI.2004.1300949","DOIUrl":null,"url":null,"abstract":"We deal with the problem of partially observed objects. These objects are defined by sets of points and their shape variations are represented by a statistical model. We present two models: a linear model based on PCA and a non-linear model based on KPCA (kernel PCA). The present work attempts to localize non visible parts of an object from visible parts and from the model, explicitly. using the variability represented by the model. Both are applied to the cephalometric problem with good results.","PeriodicalId":326040,"journal":{"name":"6th IEEE Southwest Symposium on Image Analysis and Interpretation, 2004.","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"6th IEEE Southwest Symposium on Image Analysis and Interpretation, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI.2004.1300949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We deal with the problem of partially observed objects. These objects are defined by sets of points and their shape variations are represented by a statistical model. We present two models: a linear model based on PCA and a non-linear model based on KPCA (kernel PCA). The present work attempts to localize non visible parts of an object from visible parts and from the model, explicitly. using the variability represented by the model. Both are applied to the cephalometric problem with good results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用PCA和KPCA模型对部分观测对象进行定位
我们处理部分观察到的物体的问题。这些对象由一组点定义,它们的形状变化由统计模型表示。我们提出了两种模型:基于主成分分析的线性模型和基于核主成分分析的非线性模型。目前的工作试图明确地从可见部分和模型中定位对象的不可见部分。利用模型所表示的可变性。这两种方法都适用于头位测量问题,效果良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Color interpolation for single CCD color camera A spatially selective filter based on the undecimated wavelet transform that is robust to noise estimation error Partially observed objects localization with PCA and KPCA models Multi-resolution volumetric reconstruction using labeled regions Frequency implementation of discrete wavelet transforms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1