Jiajia Li, Casey Battaglino, Ioakeim Perros, Jimeng Sun, R. Vuduc
{"title":"An input-adaptive and in-place approach to dense tensor-times-matrix multiply","authors":"Jiajia Li, Casey Battaglino, Ioakeim Perros, Jimeng Sun, R. Vuduc","doi":"10.1145/2807591.2807671","DOIUrl":null,"url":null,"abstract":"This paper describes a novel framework, called I<scp>n</scp>T<scp>ens</scp>L<scp>i</scp> (\"intensely\"), for producing fast single-node implementations of dense tensor-times-matrix multiply (T<scp>tm</scp>) of arbitrary dimension. Whereas conventional implementations of T<scp>tm</scp> rely on explicitly converting the input tensor operand into a matrix---in order to be able to use any available and fast general matrix-matrix multiply (G<scp>emm</scp>) implementation---our framework's strategy is to carry out the T<scp>tm</scp> <i>in-place</i>, avoiding this copy. As the resulting implementations expose tuning parameters, this paper also describes a heuristic empirical model for selecting an optimal configuration based on the T<scp>tm</scp>'s inputs. When compared to widely used single-node T<scp>tm</scp> implementations that are available in the Tensor Toolbox and Cyclops Tensor Framework (C<scp>tf</scp>), In-TensLi's in-place and input-adaptive T<scp>tm</scp> implementations achieve 4× and 13× speedups, showing Gemm-like performance on a variety of input sizes.","PeriodicalId":117494,"journal":{"name":"SC15: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC15: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2807591.2807671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61
Abstract
This paper describes a novel framework, called InTensLi ("intensely"), for producing fast single-node implementations of dense tensor-times-matrix multiply (Ttm) of arbitrary dimension. Whereas conventional implementations of Ttm rely on explicitly converting the input tensor operand into a matrix---in order to be able to use any available and fast general matrix-matrix multiply (Gemm) implementation---our framework's strategy is to carry out the Ttmin-place, avoiding this copy. As the resulting implementations expose tuning parameters, this paper also describes a heuristic empirical model for selecting an optimal configuration based on the Ttm's inputs. When compared to widely used single-node Ttm implementations that are available in the Tensor Toolbox and Cyclops Tensor Framework (Ctf), In-TensLi's in-place and input-adaptive Ttm implementations achieve 4× and 13× speedups, showing Gemm-like performance on a variety of input sizes.