Facial Recognition System Employing Transform Implementations of Sparse Representation Method

Taif Alobaidi, W. Mikhael
{"title":"Facial Recognition System Employing Transform Implementations of Sparse Representation Method","authors":"Taif Alobaidi, W. Mikhael","doi":"10.1109/MWSCAS.2019.8885123","DOIUrl":null,"url":null,"abstract":"A new discriminative sparse representation approach for robust face recognition via l2 regularization (SRFR) was recently published. In this paper, a face recognition system implementation employing coefficients from two non-orthogonal transform domains, namely, Two-Dimensional Discrete Wavelet Transform (2D DWT) and 2D Discrete Cosine Transform (2D DCT), is presented. The use of these coefficients in this Mixed Wavelet Cosine Sparse Representation for Face Recognition (MWCSRFR) system as features shown to appreciably lower the computational complexity and the final storage size while maintaining the high recognition rate of the SRFR. Extensive simulations were carried out on five face databases, namely, ORL, YALE, FERET, Cropped AR, and Georgia Tech. The improved properties of the MWCSRFR are proved as shown in the given sample results.","PeriodicalId":287815,"journal":{"name":"2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.2019.8885123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A new discriminative sparse representation approach for robust face recognition via l2 regularization (SRFR) was recently published. In this paper, a face recognition system implementation employing coefficients from two non-orthogonal transform domains, namely, Two-Dimensional Discrete Wavelet Transform (2D DWT) and 2D Discrete Cosine Transform (2D DCT), is presented. The use of these coefficients in this Mixed Wavelet Cosine Sparse Representation for Face Recognition (MWCSRFR) system as features shown to appreciably lower the computational complexity and the final storage size while maintaining the high recognition rate of the SRFR. Extensive simulations were carried out on five face databases, namely, ORL, YALE, FERET, Cropped AR, and Georgia Tech. The improved properties of the MWCSRFR are proved as shown in the given sample results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于稀疏表示方法的人脸识别系统
提出了一种基于l2正则化(SRFR)的鲁棒人脸识别的判别稀疏表示方法。本文提出了一种利用二维离散小波变换(2D DWT)和二维离散余弦变换(2D DCT)这两个非正交变换域的系数实现的人脸识别系统。在混合小波余弦稀疏表示人脸识别(MWCSRFR)系统中使用这些系数作为特征,可以显着降低计算复杂度和最终存储大小,同时保持SRFR的高识别率。在ORL、YALE、FERET、庄稼AR和Georgia Tech 5个人脸数据库上进行了大量的仿真,结果表明MWCSRFR的性能得到了改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Comparison of Artificial Neural Network(ANN) and Support Vector Machine(SVM) Classifiers for Neural Seizure Detection A New Hardware Accelerator for Data Sorting in Area & Energy Constrained Architectures Design Techniques for Zero Steady-State Output Ripple in Digital Low Dropout Regulators Spectrum-Efficient Communication Over Copper Using Hybrid Amplitude and Spatial Signaling AI, IoT hardware and Algorithmic Considerations for Hearing aid and Extreme Edge Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1