Palmprint recognition using Palm-line direction field texture feature

Yan-Xia Wang, Guangling Sun
{"title":"Palmprint recognition using Palm-line direction field texture feature","authors":"Yan-Xia Wang, Guangling Sun","doi":"10.1109/ICMLC.2012.6359513","DOIUrl":null,"url":null,"abstract":"Compared with the Palm line structure features, extraction and description of palm print texture features are easier. But, with the increase in the number of palmprint samples, these features are not powerful enough. In order to solve the problem, the paper proposes a new approach to enhance the distinguishing capability of texture features for palm print recognition. It uses classical results on Riemannian geometry to obtain the information of palm lines and construct direction fields of palm lines. The direction fields become a part of the textures of the palmprint image to enhance the distinguishing capability of texture features. Finally, the dual-tree complex wavelet transform-based local binary pattern weighted histogram method (DT -CWT based LBPWH) is used to extract enhanced texture features. The experimental results validate the effectiveness of the method.","PeriodicalId":128006,"journal":{"name":"2012 International Conference on Machine Learning and Cybernetics","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2012.6359513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Compared with the Palm line structure features, extraction and description of palm print texture features are easier. But, with the increase in the number of palmprint samples, these features are not powerful enough. In order to solve the problem, the paper proposes a new approach to enhance the distinguishing capability of texture features for palm print recognition. It uses classical results on Riemannian geometry to obtain the information of palm lines and construct direction fields of palm lines. The direction fields become a part of the textures of the palmprint image to enhance the distinguishing capability of texture features. Finally, the dual-tree complex wavelet transform-based local binary pattern weighted histogram method (DT -CWT based LBPWH) is used to extract enhanced texture features. The experimental results validate the effectiveness of the method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于掌纹线方向场纹理特征的掌纹识别
与掌纹结构特征相比,掌纹纹理特征的提取和描述更为简单。但是,随着掌纹样本数量的增加,这些功能不够强大。为了解决这一问题,本文提出了一种增强纹理特征识别能力的新方法。利用经典黎曼几何结果获取掌线信息,构造掌线方向场。方向场成为掌纹图像纹理的一部分,增强了纹理特征的识别能力。最后,采用基于双树复小波变换的局部二值模式加权直方图方法(DT -CWT based LBPWH)提取增强纹理特征。实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ROBUST H∞ filtering for a class of nonlinear uncertain singular systems with time-varying delay Discriminati on between external short circuit and internal winding fault in power transformer using discrete wavelet transform and back-propagation neural network Hybrid linear and nonlinear weight Particle Swarm Optimization algorithm Transcriptional cooperativity in molecular dynamics based on normal mode analysis An efficient web document clustering algorithm for building dynamic similarity profile in Similarity-aware web caching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1