Hybrid linear and nonlinear weight Particle Swarm Optimization algorithm

Jian-Ru Zheng, Guo-Li Zhang, Hua Zuo
{"title":"Hybrid linear and nonlinear weight Particle Swarm Optimization algorithm","authors":"Jian-Ru Zheng, Guo-Li Zhang, Hua Zuo","doi":"10.1109/ICMLC.2012.6359532","DOIUrl":null,"url":null,"abstract":"The inertia weight is an important parameter in the Particle Swarm Optimization algorithm, which controls the degree of influence of the contemporary speed to the next generation and plays a role of balancing global search and local search. In the iteration process, the inertia weight will decrease nonlinearly at the early stage and decrease linearly at the later stage. The improved algorithm will effectively prevent premature convergence of the algorithm. The simulation results show that the improved algorithm is superior to the particle swarm optimization algorithm of the linear decreasing weight.","PeriodicalId":128006,"journal":{"name":"2012 International Conference on Machine Learning and Cybernetics","volume":"157 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2012.6359532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The inertia weight is an important parameter in the Particle Swarm Optimization algorithm, which controls the degree of influence of the contemporary speed to the next generation and plays a role of balancing global search and local search. In the iteration process, the inertia weight will decrease nonlinearly at the early stage and decrease linearly at the later stage. The improved algorithm will effectively prevent premature convergence of the algorithm. The simulation results show that the improved algorithm is superior to the particle swarm optimization algorithm of the linear decreasing weight.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合线性和非线性权重粒子群优化算法
惯性权值是粒子群优化算法中的一个重要参数,它控制着当前速度对下一代的影响程度,起到平衡全局搜索和局部搜索的作用。在迭代过程中,惯性权重在前期非线性减小,后期线性减小。改进后的算法可以有效地防止算法的过早收敛。仿真结果表明,改进算法优于权值线性递减的粒子群优化算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ROBUST H∞ filtering for a class of nonlinear uncertain singular systems with time-varying delay Discriminati on between external short circuit and internal winding fault in power transformer using discrete wavelet transform and back-propagation neural network Hybrid linear and nonlinear weight Particle Swarm Optimization algorithm Transcriptional cooperativity in molecular dynamics based on normal mode analysis An efficient web document clustering algorithm for building dynamic similarity profile in Similarity-aware web caching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1