A canonical representation for distributions of adaptive matched subspace detectors

S. Kraut, L. T. McWhorter, L. Scharf
{"title":"A canonical representation for distributions of adaptive matched subspace detectors","authors":"S. Kraut, L. T. McWhorter, L. Scharf","doi":"10.1109/ACSSC.1997.679120","DOIUrl":null,"url":null,"abstract":"We present a unified derivation of the distributions for adaptive versions of matched subspace detectors (MSDs) derived by Scharf (see Statistical Signal Processing, Addison-Wesley, and IEEE Trans. Signal Processing, 1996). These include: (1) the matched filter detector, (2) the gain invariant (CFAR) matched filter detector (3) the phase invariant matched subspace detector, and (4) the gain invariant (CFAR) and phase invariant matched subspace detector. We show that all these detectors can be decomposed into representations that are simple functions of the same five statistically independent, chi-squared or normal, scalar random variables. This canonical representation has at least three advantages: (1) the behavior of these detectors can easily be related to that of the non-adaptive detectors from which they are derived (2) moments can be simply obtained from the distributions of the scalar random variables, and (3) Monte Carlo simulations of the distributions can be implemented more efficiently.","PeriodicalId":240431,"journal":{"name":"Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1997.679120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

We present a unified derivation of the distributions for adaptive versions of matched subspace detectors (MSDs) derived by Scharf (see Statistical Signal Processing, Addison-Wesley, and IEEE Trans. Signal Processing, 1996). These include: (1) the matched filter detector, (2) the gain invariant (CFAR) matched filter detector (3) the phase invariant matched subspace detector, and (4) the gain invariant (CFAR) and phase invariant matched subspace detector. We show that all these detectors can be decomposed into representations that are simple functions of the same five statistically independent, chi-squared or normal, scalar random variables. This canonical representation has at least three advantages: (1) the behavior of these detectors can easily be related to that of the non-adaptive detectors from which they are derived (2) moments can be simply obtained from the distributions of the scalar random variables, and (3) Monte Carlo simulations of the distributions can be implemented more efficiently.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自适应匹配子空间检测器分布的规范表示
我们提出了由Scharf导出的匹配子空间检测器(MSDs)的自适应版本的分布的统一推导(参见统计信号处理,Addison-Wesley和IEEE Trans)。信号处理,1996)。这些包括:(1)匹配滤波器检测器,(2)增益不变(CFAR)匹配滤波器检测器,(3)相位不变匹配子空间检测器,以及(4)增益不变(CFAR)和相位不变匹配子空间检测器。我们表明,所有这些检测器都可以分解为表示,这些表示是相同的五个统计独立的卡方或正态标量随机变量的简单函数。这种规范表示至少有三个优点:(1)这些检测器的行为可以很容易地与推导它们的非自适应检测器的行为相关联;(2)矩可以简单地从标量随机变量的分布中获得;(3)分布的蒙特卡罗模拟可以更有效地实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A comparative study of multiple accessing schemes Self-affine modeling of speech signal in speech compression A progressive transmission image coder using linear phase paraunitary filter banks A canonical representation for distributions of adaptive matched subspace detectors Finite length equalization for FFT-based multicarrier systems-an error-whitening viewpoint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1