Parallel Read Partitioning for Concurrent Assembly of Metagenomic Data

Vasudevan Rengasamy, M. Kandemir, P. Medvedev, Kamesh Madduri
{"title":"Parallel Read Partitioning for Concurrent Assembly of Metagenomic Data","authors":"Vasudevan Rengasamy, M. Kandemir, P. Medvedev, Kamesh Madduri","doi":"10.1109/HiPC.2018.00044","DOIUrl":null,"url":null,"abstract":"We present MetaPartMin and MetaPart, two new lightweight parallel metagenomic read partitioning strategies. Metagenomic data partitioning can aid the concurrent de novo assembly of partitions. Prior read partitioning methods tend to create a giant component of reads. We avoid this problem with new heuristics amenable to statically load-balanced parallelization. Our strategies require enumerating and sorting k-mers and minimizers from the input read sequences, and traversing an implicit graph to identify components. MetaPartMin uses minimizers to significantly lower aggregate main memory use, thereby enabling the processing of massive datasets on a modest number of compute nodes. All steps in our strategies exploit hybrid multicore and distributed-memory parallelism. We demonstrate scaling and efficiency on a collection of large-scale datasets. MetaPartMin can process a 1.25 terabase soil metagenome in 6 minutes on just 32 Intel Skylake nodes (48 cores each) of the Stampede2 supercomputer, and a 252 gigabase soil metagenome in 54 seconds on 16 Stampede2 Skylake nodes. The source code is available at https://github.com/vasupsu/MetaPart.","PeriodicalId":113335,"journal":{"name":"2018 IEEE 25th International Conference on High Performance Computing (HiPC)","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 25th International Conference on High Performance Computing (HiPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HiPC.2018.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present MetaPartMin and MetaPart, two new lightweight parallel metagenomic read partitioning strategies. Metagenomic data partitioning can aid the concurrent de novo assembly of partitions. Prior read partitioning methods tend to create a giant component of reads. We avoid this problem with new heuristics amenable to statically load-balanced parallelization. Our strategies require enumerating and sorting k-mers and minimizers from the input read sequences, and traversing an implicit graph to identify components. MetaPartMin uses minimizers to significantly lower aggregate main memory use, thereby enabling the processing of massive datasets on a modest number of compute nodes. All steps in our strategies exploit hybrid multicore and distributed-memory parallelism. We demonstrate scaling and efficiency on a collection of large-scale datasets. MetaPartMin can process a 1.25 terabase soil metagenome in 6 minutes on just 32 Intel Skylake nodes (48 cores each) of the Stampede2 supercomputer, and a 252 gigabase soil metagenome in 54 seconds on 16 Stampede2 Skylake nodes. The source code is available at https://github.com/vasupsu/MetaPart.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向宏基因组数据并发组装的并行读分区
提出了MetaPartMin和MetaPart两种新的轻量级并行宏基因组读分区策略。宏基因组数据分区可以帮助分区的并发重新组装。先前的读分区方法倾向于创建一个巨大的读组件。我们使用新的启发式方法避免了这个问题,这种方法适用于静态负载平衡并行化。我们的策略需要从输入读取序列中枚举和排序k-mers和最小值,并遍历隐式图以识别组件。MetaPartMin使用最小化器来显著降低主内存的总使用量,从而能够在适度数量的计算节点上处理大量数据集。我们策略中的所有步骤都利用了混合多核和分布式内存并行性。我们在一组大规模数据集上展示了可伸缩性和效率。MetaPartMin可以在Stampede2超级计算机的32个Intel Skylake节点(每个节点48核)上6分钟处理1.25 tb的土壤宏基因组,在16个Stampede2 Skylake节点上54秒处理252 gb的土壤宏基因组。源代码可从https://github.com/vasupsu/MetaPart获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Workflow Simulation Aware and Multi-threading Effective Task Scheduling for Heterogeneous Computing Parallel Read Partitioning for Concurrent Assembly of Metagenomic Data Decentralized Privacy-Preserving Timed Execution in Blockchain-Based Smart Contract Platforms OC-DNN: Exploiting Advanced Unified Memory Capabilities in CUDA 9 and Volta GPUs for Out-of-Core DNN Training Dynamic Count-Min Sketch for Analytical Queries Over Continuous Data Streams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1