Venilia, On-line Learning and Prediction of Vessel Destination

Moti Bachar, Gal Elimelech, Itai Gat, Gil Sobol, Nicolo Rivetti, A. Gal
{"title":"Venilia, On-line Learning and Prediction of Vessel Destination","authors":"Moti Bachar, Gal Elimelech, Itai Gat, Gil Sobol, Nicolo Rivetti, A. Gal","doi":"10.1145/3210284.3220505","DOIUrl":null,"url":null,"abstract":"The ACM DEBS 2018 Grand Challenge focuses on (soft) real-time prediction of both the destination port and the time of arrival of vessels, monitored through the Automated Identification System (AIS). Venilia prediction mechanism is based on a variety of machine learning techniques, including Markov predictive models. To improve the accuracy of a model, trained off-line on historical data, Venilia supports also on-line continuous training using an incoming event stream. The software architecture enables a low latency, highly parallelized, and load balanced prediction pipeline. Aiming at a portable and reusable solution, Venilia is implemented on top of the Akka Actor framework. Finally, Venilia is also equipped with a visualization tool for data exploration.","PeriodicalId":412438,"journal":{"name":"Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3210284.3220505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The ACM DEBS 2018 Grand Challenge focuses on (soft) real-time prediction of both the destination port and the time of arrival of vessels, monitored through the Automated Identification System (AIS). Venilia prediction mechanism is based on a variety of machine learning techniques, including Markov predictive models. To improve the accuracy of a model, trained off-line on historical data, Venilia supports also on-line continuous training using an incoming event stream. The software architecture enables a low latency, highly parallelized, and load balanced prediction pipeline. Aiming at a portable and reusable solution, Venilia is implemented on top of the Akka Actor framework. Finally, Venilia is also equipped with a visualization tool for data exploration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Venilia,船舶目的地在线学习与预测
ACM DEBS 2018大挑战侧重于通过自动识别系统(AIS)监测目的港和船舶到达时间的(软)实时预测。Venilia预测机制是基于多种机器学习技术,包括马尔可夫预测模型。为了提高离线历史数据训练模型的准确性,Venilia还支持使用传入事件流进行在线连续训练。该软件架构支持低延迟、高度并行化和负载均衡的预测管道。Venilia的目标是一个可移植和可重用的解决方案,它是在Akka Actor框架之上实现的。最后,Venilia还配备了用于数据探索的可视化工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vessel Trajectory Prediction using Sequence-to-Sequence Models over Spatial Grid MtDetector Predicting Destinations by Nearest Neighbor Search on Training Vessel Routes Venilia, On-line Learning and Prediction of Vessel Destination Proceedings of the 12th ACM International Conference on Distributed and Event-based Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1