Toward Limiting Social Botnet Effectiveness while Detection Is Performed: A Probabilistic Approach

Matthew Spradling, Mark Allison, Tsenguun Tsogbadrakh, Jay Strong
{"title":"Toward Limiting Social Botnet Effectiveness while Detection Is Performed: A Probabilistic Approach","authors":"Matthew Spradling, Mark Allison, Tsenguun Tsogbadrakh, Jay Strong","doi":"10.1109/CSCI49370.2019.00259","DOIUrl":null,"url":null,"abstract":"The prevalence of social botnets has increased public distrust of social media networks. Current methods exist for detecting bot activity on Twitter, Reddit, Facebook, and other social media platforms. Most of these detection methods rely upon observing user behavior for a period of time. Unfortunately, the behavior observation period allows time for a botnet to successfully propagate one or many posts before removal. In this paper, we model the post propagation patterns of normal users and social botnets. We prove that a botnet may exploit deterministic propagation actions to elevate a post even with a small botnet population. We propose a probabilistic model which can limit the impact of social media botnets until they can be detected and removed. While our approach maintains expected results for non-coordinated activity, coordinated botnets will be detected before propagation with high probability.","PeriodicalId":103662,"journal":{"name":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computational Science and Computational Intelligence (CSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCI49370.2019.00259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The prevalence of social botnets has increased public distrust of social media networks. Current methods exist for detecting bot activity on Twitter, Reddit, Facebook, and other social media platforms. Most of these detection methods rely upon observing user behavior for a period of time. Unfortunately, the behavior observation period allows time for a botnet to successfully propagate one or many posts before removal. In this paper, we model the post propagation patterns of normal users and social botnets. We prove that a botnet may exploit deterministic propagation actions to elevate a post even with a small botnet population. We propose a probabilistic model which can limit the impact of social media botnets until they can be detected and removed. While our approach maintains expected results for non-coordinated activity, coordinated botnets will be detected before propagation with high probability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在执行检测时限制社会僵尸网络的有效性:一种概率方法
社交僵尸网络的盛行增加了公众对社交媒体网络的不信任。目前存在检测Twitter、Reddit、Facebook和其他社交媒体平台上机器人活动的方法。这些检测方法大多依赖于一段时间内对用户行为的观察。不幸的是,行为观察期允许僵尸网络在删除之前成功传播一个或多个帖子。在本文中,我们对普通用户和社交僵尸网络的后传播模式进行了建模。我们证明了即使僵尸网络人口很少,僵尸网络也可以利用确定性传播行为来提升帖子。我们提出了一个概率模型,可以限制社交媒体僵尸网络的影响,直到它们可以被检测和移除。虽然我们的方法对非协调活动保持预期结果,但协调僵尸网络将以高概率在传播之前被检测到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Temperature Prediction Based on Long Short Term Memory Networks Extending a Soft-Core RISC-V Processor to Accelerate CNN Inference Uncovering Los Angeles Tourists' Patterns Using Geospatial Analysis and Supervised Machine Learning with Random Forest Predictors A Framework for Leveraging Business Intelligence to Manage Transactional Data Flows between Private Healthcare Providers and Medical Aid Administrators Feasibility Study of a Consumer Multi-Sensory Wristband to Monitor Sleep Disorder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1