A Methodology for the Prediction of Drug Target Interaction using CDK Descriptors

Tanya Liyaqat, T. Ahmad, Chandni Saxena
{"title":"A Methodology for the Prediction of Drug Target Interaction using CDK Descriptors","authors":"Tanya Liyaqat, T. Ahmad, Chandni Saxena","doi":"10.48550/arXiv.2210.11482","DOIUrl":null,"url":null,"abstract":"Detecting probable Drug Target Interaction (DTI) is a critical task in drug discovery. Conventional DTI studies are expensive, labor-intensive, and take a lot of time, hence there are significant reasons to construct useful computational techniques that may successfully anticipate possible DTIs. Although certain methods have been developed for this cause, numerous interactions are yet to be discovered, and prediction accuracy is still low. To meet these challenges, we propose a DTI prediction model built on molecular structure of drugs and sequence of target proteins. In the proposed model, we use Simplified Molecular Input Line Entry System (SMILES) to create CDK descriptors, Molecular ACCess System (MACCS) fingerprints, Electrotopological state (Estate) fingerprints and amino acid sequences of targets to get Pseudo Amino Acid Composition (PseAAC). We target to evaluate performance of DTI prediction models using CDK descriptors. For comparison, we use benchmark data and evaluate models performance on two widely used fingerprints, MACCS fingerprints and Estate fingerprints. The evaluation of performances shows that CDK descriptors are superior at predicting DTIs. The proposed method also outperforms other previously published techniques significantly.","PeriodicalId":281152,"journal":{"name":"International Conference on Neural Information Processing","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Neural Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.11482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Detecting probable Drug Target Interaction (DTI) is a critical task in drug discovery. Conventional DTI studies are expensive, labor-intensive, and take a lot of time, hence there are significant reasons to construct useful computational techniques that may successfully anticipate possible DTIs. Although certain methods have been developed for this cause, numerous interactions are yet to be discovered, and prediction accuracy is still low. To meet these challenges, we propose a DTI prediction model built on molecular structure of drugs and sequence of target proteins. In the proposed model, we use Simplified Molecular Input Line Entry System (SMILES) to create CDK descriptors, Molecular ACCess System (MACCS) fingerprints, Electrotopological state (Estate) fingerprints and amino acid sequences of targets to get Pseudo Amino Acid Composition (PseAAC). We target to evaluate performance of DTI prediction models using CDK descriptors. For comparison, we use benchmark data and evaluate models performance on two widely used fingerprints, MACCS fingerprints and Estate fingerprints. The evaluation of performances shows that CDK descriptors are superior at predicting DTIs. The proposed method also outperforms other previously published techniques significantly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种利用CDK描述符预测药物靶标相互作用的方法
检测可能的药物靶标相互作用(DTI)是药物发现中的一项关键任务。传统的DTI研究是昂贵的,劳动密集型的,并且需要大量的时间,因此有重要的理由构建有用的计算技术,可以成功地预测可能的DTI。虽然针对这一原因已经开发了一些方法,但许多相互作用尚未被发现,预测精度仍然很低。为了应对这些挑战,我们提出了一种基于药物分子结构和靶蛋白序列的DTI预测模型。在该模型中,我们使用简化分子输入线输入系统(SMILES)来创建CDK描述符,分子访问系统(MACCS)指纹,电拓扑状态(Estate)指纹和目标的氨基酸序列来获得伪氨基酸组成(PseAAC)。我们的目标是评估使用CDK描述符的DTI预测模型的性能。为了进行比较,我们使用基准数据并评估了两种广泛使用的指纹,MACCS指纹和Estate指纹的模型性能。性能评价表明,CDK描述符在预测dti方面具有优势。所提出的方法也明显优于其他先前发表的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On Searching for Minimal Integer Representation of Undirected Graphs Mastering Complex Coordination Through Attention-Based Dynamic Graph FIT: Frequency-based Image Translation for Domain Adaptive Object Detection Emotion Detection in Unfix-length-Context Conversation Rethinking Voxelization and Classification for 3D Object Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1