Emotion Detection in Unfix-length-Context Conversation

Xiaochen Zhang, Daniel Tang
{"title":"Emotion Detection in Unfix-length-Context Conversation","authors":"Xiaochen Zhang, Daniel Tang","doi":"10.48550/arXiv.2302.06029","DOIUrl":null,"url":null,"abstract":"We leverage different context windows when predicting the emotion of different utterances. New modules are included to realize variable-length context: 1) two speaker-aware units, which explicitly model inner- and inter-speaker dependencies to form distilled conversational context, and 2) a top-k normalization layer, which determines the most proper context windows from the conversational context to predict emotion. Experiments and ablation studies show that our approach outperforms several strong baselines on three public datasets.","PeriodicalId":281152,"journal":{"name":"International Conference on Neural Information Processing","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Neural Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.06029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We leverage different context windows when predicting the emotion of different utterances. New modules are included to realize variable-length context: 1) two speaker-aware units, which explicitly model inner- and inter-speaker dependencies to form distilled conversational context, and 2) a top-k normalization layer, which determines the most proper context windows from the conversational context to predict emotion. Experiments and ablation studies show that our approach outperforms several strong baselines on three public datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
非固定长度上下文对话中的情感检测
在预测不同话语的情绪时,我们利用不同的语境窗口。为了实现可变长度的上下文,我们引入了新的模块:1)两个说话人感知单元,它们显式地建模说话人内部和说话人之间的依赖关系,形成提炼的会话上下文;2)一个top-k规范化层,它从会话上下文中确定最合适的上下文窗口来预测情绪。实验和消融研究表明,我们的方法在三个公共数据集上优于几个强基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On Searching for Minimal Integer Representation of Undirected Graphs Mastering Complex Coordination Through Attention-Based Dynamic Graph FIT: Frequency-based Image Translation for Domain Adaptive Object Detection Emotion Detection in Unfix-length-Context Conversation Rethinking Voxelization and Classification for 3D Object Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1