Robust anomaly detection in dynamic networks

Jing Wang, I. Paschalidis
{"title":"Robust anomaly detection in dynamic networks","authors":"Jing Wang, I. Paschalidis","doi":"10.1109/MED.2014.6961410","DOIUrl":null,"url":null,"abstract":"We propose two robust methods for anomaly detection in dynamic networks in which the properties of normal traffic evolve dynamically. We formulate the robust anomaly detection problem as a binary composite hypothesis testing problem and propose two methods: a model-free and a model-based one, leveraging techniques from the theory of large deviations. Both methods require a family of Probability Laws (PLs) that represent normal properties of traffic. We devise a two-step procedure to estimate this family of PLs. We compare the performance of our robust methods and their vanilla counterparts, which assume that normal traffic is stationary, on a network with a diurnal normal pattern and a common anomaly related to data exfiltration. Simulation results show that our robust methods perform better than their vanilla counterparts in dynamic networks.","PeriodicalId":127957,"journal":{"name":"22nd Mediterranean Conference on Control and Automation","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd Mediterranean Conference on Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2014.6961410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose two robust methods for anomaly detection in dynamic networks in which the properties of normal traffic evolve dynamically. We formulate the robust anomaly detection problem as a binary composite hypothesis testing problem and propose two methods: a model-free and a model-based one, leveraging techniques from the theory of large deviations. Both methods require a family of Probability Laws (PLs) that represent normal properties of traffic. We devise a two-step procedure to estimate this family of PLs. We compare the performance of our robust methods and their vanilla counterparts, which assume that normal traffic is stationary, on a network with a diurnal normal pattern and a common anomaly related to data exfiltration. Simulation results show that our robust methods perform better than their vanilla counterparts in dynamic networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态网络中的鲁棒异常检测
在正常流量动态演化的动态网络中,提出了两种鲁棒的异常检测方法。我们将鲁棒异常检测问题表述为二元复合假设检验问题,并利用大偏差理论中的技术,提出了两种方法:无模型和基于模型的方法。这两种方法都需要一组表示交通正常属性的概率定律(PLs)。我们设计了一个两步程序来估计这类PLs。我们比较了我们的鲁棒方法和他们的香草对应方法的性能,后者假设正常流量是静止的,在一个具有日正常模式和与数据泄露相关的常见异常的网络上。仿真结果表明,我们的鲁棒方法在动态网络中的性能优于传统的鲁棒方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online adaptive geometry predictor of aquaculture fish-nets Mathematical study of the global dynamics of a concave gene expression model Placement of fixed modes by decentralised output feedback control Identification and switching quasi-LPV control of a four wheeled omnidirectional robot Robust anomaly detection in dynamic networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1