Zero-Shot Voice Cloning Using Variational Embedding with Attention Mechanism

Jaeuk Lee, Jiye G. Kim, Joon‐Hyuk Chang
{"title":"Zero-Shot Voice Cloning Using Variational Embedding with Attention Mechanism","authors":"Jaeuk Lee, Jiye G. Kim, Joon‐Hyuk Chang","doi":"10.1109/IC-NIDC54101.2021.9660599","DOIUrl":null,"url":null,"abstract":"Many voice cloning studies based on multi-speaker text-to-speech (TTS) have been conducted. Among the techniques of voice cloning, we focus on zero-shot voice cloning. The most important aspect of zero-shot voice cloning is which speaker embedding is used. In this study, two types of speaker embeddings are used. One is extracted from the mel spectrogram using a speaker encoder and the other is stored in an embedding dictionary, such as a vector quantized-variational autoencoder (VQ-VAE). To extract embedding from the embedding dictionary, an attention mechanism is applied, which we call attention- V AE (AT - V AE). By employing the embedding extracted by the speaker encoder as a query in the attention mechanism, the attention weights are calculated in the embedding dictionary. This mechanism allows the extraction of speaker embedding, which represents unseen speakers. In addition, training is applied to make our model robust to unseen speakers. Through the training stage, our system has developed further. The performance of the proposed method was validated in terms of various metrics, and it was demonstrated that the proposed method enables voice cloning without adaptation training.","PeriodicalId":264468,"journal":{"name":"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC-NIDC54101.2021.9660599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many voice cloning studies based on multi-speaker text-to-speech (TTS) have been conducted. Among the techniques of voice cloning, we focus on zero-shot voice cloning. The most important aspect of zero-shot voice cloning is which speaker embedding is used. In this study, two types of speaker embeddings are used. One is extracted from the mel spectrogram using a speaker encoder and the other is stored in an embedding dictionary, such as a vector quantized-variational autoencoder (VQ-VAE). To extract embedding from the embedding dictionary, an attention mechanism is applied, which we call attention- V AE (AT - V AE). By employing the embedding extracted by the speaker encoder as a query in the attention mechanism, the attention weights are calculated in the embedding dictionary. This mechanism allows the extraction of speaker embedding, which represents unseen speakers. In addition, training is applied to make our model robust to unseen speakers. Through the training stage, our system has developed further. The performance of the proposed method was validated in terms of various metrics, and it was demonstrated that the proposed method enables voice cloning without adaptation training.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于注意力机制的变分嵌入零采样语音克隆
许多基于多说话人文本到语音(TTS)的语音克隆研究已经开展。在语音克隆技术中,我们重点研究了零采样语音克隆技术。零射击语音克隆最重要的方面是使用哪一个扬声器嵌入。在本研究中,使用了两种类型的说话人嵌入。一种是使用扬声器编码器从mel频谱图中提取,另一种是存储在嵌入字典中,例如矢量量化变分自编码器(VQ-VAE)。为了从嵌入字典中提取嵌入,采用了一种注意机制,我们称之为注意- V AE (AT - V AE)。利用说话人编码器提取的嵌入作为注意机制的查询,在嵌入字典中计算注意权值。这种机制允许提取说话人嵌入,它代表看不见的说话人。此外,还进行了训练,使我们的模型对未见的说话者具有鲁棒性。经过培训阶段,我们的系统得到了进一步的发展。从多个指标对所提方法的性能进行了验证,结果表明所提方法无需自适应训练即可实现语音克隆。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving Dense FAQ Retrieval with Synthetic Training A Security Integrated Attestation Scheme for Embedded Devices Zero-Shot Voice Cloning Using Variational Embedding with Attention Mechanism Convolutional Neural Network Based Transmit Power Control for D2D Communication in Unlicensed Spectrum WCD: A New Chinese Online Social Media Dataset for Clickbait Analysis and Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1