Stationarity conditions in optimal control problems class related to dynamical objects group control

I. Samylovskiy, Anastasia K. Samylovskaya, Alexander Filippov
{"title":"Stationarity conditions in optimal control problems class related to dynamical objects group control","authors":"I. Samylovskiy, Anastasia K. Samylovskaya, Alexander Filippov","doi":"10.1109/Control55989.2022.9781438","DOIUrl":null,"url":null,"abstract":"We consider two classes of optimal control problems related dynamical oobjects group control. The first one is target orbiting of autonomous objects group with carrier object use (satellites, UAVs etc.). To describe the corrsponding situation, we use system of ODEs that consists of two subsystems: the \"carrier\" subsystem and a number of \"payload\" ones. They are determined on the \"main\" and \"nested\" time segments ordered w.r.t. start times. Start time of each \"nested\" segment is in fact time of the corresponding payload \"decoupling\". Our aim is to formulate first-order necessary conditions of extended weak minimum (\"extended\" means in fact that we consider variations of decoupling times also). To do this, we perfom the following scheme: first, introduce normalized time and replicate all constraints to reduce our OCP to classical form, then write necessary conditions, and finally, rewrite these conditions in original time. We also provide simple kinematic example of our conditions application (carrier moves along helix between two \"orbits\", payloads moves in passive way after decoupling and, in addition, provide problem statement related to group cooperation evasion). The second class is cooperative evasion of objects in gravity field. A number of controled \"satellites\" have to avoid collisions with both of uncontroled \"space debri\" elements and other satellites. We work with a number of \"local\" costs of maximin type, transform each of them to standard terminal cost by introducing undefined scalar variable and linear state constraint and then use the convolution with weights to work with \"general\" cost.","PeriodicalId":101892,"journal":{"name":"2022 UKACC 13th International Conference on Control (CONTROL)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 UKACC 13th International Conference on Control (CONTROL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Control55989.2022.9781438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider two classes of optimal control problems related dynamical oobjects group control. The first one is target orbiting of autonomous objects group with carrier object use (satellites, UAVs etc.). To describe the corrsponding situation, we use system of ODEs that consists of two subsystems: the "carrier" subsystem and a number of "payload" ones. They are determined on the "main" and "nested" time segments ordered w.r.t. start times. Start time of each "nested" segment is in fact time of the corresponding payload "decoupling". Our aim is to formulate first-order necessary conditions of extended weak minimum ("extended" means in fact that we consider variations of decoupling times also). To do this, we perfom the following scheme: first, introduce normalized time and replicate all constraints to reduce our OCP to classical form, then write necessary conditions, and finally, rewrite these conditions in original time. We also provide simple kinematic example of our conditions application (carrier moves along helix between two "orbits", payloads moves in passive way after decoupling and, in addition, provide problem statement related to group cooperation evasion). The second class is cooperative evasion of objects in gravity field. A number of controled "satellites" have to avoid collisions with both of uncontroled "space debri" elements and other satellites. We work with a number of "local" costs of maximin type, transform each of them to standard terminal cost by introducing undefined scalar variable and linear state constraint and then use the convolution with weights to work with "general" cost.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一类动态目标群控制的最优控制问题的平稳性条件
研究了两类与动态目标群控制相关的最优控制问题。第一种是利用载体(卫星、无人机等)的自主目标群的目标轨道化。为了描述相应的情况,我们使用由两个子系统组成的ode系统:“载体”子系统和许多“有效载荷”子系统。它们是在“主”和“嵌套”时间段上确定的,按开始时间排序。每个“嵌套”段的起始时间实际上是对应载荷“解耦”的时间。我们的目标是制定扩展弱最小值的一阶必要条件(“扩展”实际上意味着我们也考虑解耦时间的变化)。为此,我们执行以下方案:首先,引入规范化时间并复制所有约束以将OCP简化为经典形式,然后编写必要条件,最后在原始时间中重写这些条件。我们还提供了条件应用的简单运动学示例(载体在两个“轨道”之间沿螺旋移动,有效载荷在解耦后以被动方式移动,此外还提供了与群体合作规避相关的问题陈述)。第二类是重力场中物体的协同躲避。一些受控制的“卫星”必须避免与不受控制的“空间碎片”元件和其他卫星相撞。我们处理了一些最大化类型的“局部”成本,通过引入未定义标量变量和线性状态约束将它们转换为标准终端成本,然后使用带权重的卷积处理“一般”成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Game-Theoretic Approximate Solution of Nonlinear Optimal Control Problems New Paradigms in Traceable Process Control Thermometry Stationarity conditions in optimal control problems class related to dynamical objects group control Identification and Modeling of Wire Arc Additive Manufacturing under consideration of Interpass Temperature A linear regression variable time delay estimation algorithm for the analysis of hydraulic manipulators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1