Automatic Selection of White Paint Types for Automotive Industry

D. Martínez-Camacho, D. May-Arrioja, M. Torres-Cisneros, R. Guzmán-Cabrera
{"title":"Automatic Selection of White Paint Types for Automotive Industry","authors":"D. Martínez-Camacho, D. May-Arrioja, M. Torres-Cisneros, R. Guzmán-Cabrera","doi":"10.1109/ROPEC55836.2022.10018622","DOIUrl":null,"url":null,"abstract":"In this work, we design an optical experimental setup and a data augmentation methodology to generate 384 images of automotive parts, painted with two different types of white paint. We also perform the automatic classification of the database considering two different classes. To obtain the highest precision, we have used two different classification scenarios, 3 algorithms, and 4 metrics. Also, we assume that the results can be improved by extracting the image characteristics using the convolutional neural network ResNet50 and using them as input. Our results show that an error-free classification can be obtained independently of the scenario or classifier. We obtained 100 % in each of the 4 metrics in the six studied variations. Therefore, the machine time is the parameter we can use to select the optimal classifier, where the classifier Multinomial Naïve-Bayes under the Training and Test Set scenario was the fastest algorithm with 65 s, and the classifier Machine Vector Support under the Cross-Validation scenario, the slowest with 79.12 s.","PeriodicalId":237392,"journal":{"name":"2022 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROPEC55836.2022.10018622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we design an optical experimental setup and a data augmentation methodology to generate 384 images of automotive parts, painted with two different types of white paint. We also perform the automatic classification of the database considering two different classes. To obtain the highest precision, we have used two different classification scenarios, 3 algorithms, and 4 metrics. Also, we assume that the results can be improved by extracting the image characteristics using the convolutional neural network ResNet50 and using them as input. Our results show that an error-free classification can be obtained independently of the scenario or classifier. We obtained 100 % in each of the 4 metrics in the six studied variations. Therefore, the machine time is the parameter we can use to select the optimal classifier, where the classifier Multinomial Naïve-Bayes under the Training and Test Set scenario was the fastest algorithm with 65 s, and the classifier Machine Vector Support under the Cross-Validation scenario, the slowest with 79.12 s.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
汽车工业白漆类型自动选择
在这项工作中,我们设计了一个光学实验装置和一种数据增强方法来生成384张汽车零部件的图像,这些图像被涂上了两种不同类型的白色涂料。我们还考虑了两个不同的类,对数据库进行了自动分类。为了获得最高的精度,我们使用了两种不同的分类场景、3种算法和4个指标。此外,我们假设可以通过使用卷积神经网络ResNet50提取图像特征并将其作为输入来改进结果。我们的结果表明,可以独立于场景或分类器获得无错误分类。在研究的6种变异中,我们的4个指标都达到了100%。因此,机器时间是我们可以用来选择最优分类器的参数,其中训练和测试集场景下的分类器Multinomial Naïve-Bayes算法最快,为65秒,交叉验证场景下的分类器machine Vector Support算法最慢,为79.12秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data Analysis Architecture using Techniques of Machine Learning for the Prediction of the Quality of Blood Fonations against the Hepatitis C Virus Optimal Sizing of a Stand-alone Renewable-Powered Hydrogen Fueling Station Automatic Selection of White Paint Types for Automotive Industry Training of a convolutional neural network for autonomous vehicle Driving Watermarking Scheme With Bounded-Exhaustive Self-Recovery Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1