{"title":"Push-Push: A Drag-like Operation Overlapped with a Page Transition Operation on Touch Interfaces","authors":"Jaehyun Han, Geehyuk Lee","doi":"10.1145/2807442.2807457","DOIUrl":null,"url":null,"abstract":"A page transition operation on touch interfaces is a common and frequent subtask when one conducts a drag-like operation such as selecting text and dragging an icon. Traditional page transition gestures such as scrolling and flicking gestures, however, cannot be conducted while conducting the drag-like operation since they have a confliction. We proposed Push-Push that is a new drag-like operation not in conflict with page transition operations. Thus, page transition operations could be conducted while performing Push-Push. To design Push-Push, we utilized the hover and pressed states as additional input states of touch interfaces. The results from two experiments showed that Push-Push has an advantage on increasing performance and qualitative opinions of users while reducing the subjective overload.","PeriodicalId":103668,"journal":{"name":"Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2807442.2807457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
A page transition operation on touch interfaces is a common and frequent subtask when one conducts a drag-like operation such as selecting text and dragging an icon. Traditional page transition gestures such as scrolling and flicking gestures, however, cannot be conducted while conducting the drag-like operation since they have a confliction. We proposed Push-Push that is a new drag-like operation not in conflict with page transition operations. Thus, page transition operations could be conducted while performing Push-Push. To design Push-Push, we utilized the hover and pressed states as additional input states of touch interfaces. The results from two experiments showed that Push-Push has an advantage on increasing performance and qualitative opinions of users while reducing the subjective overload.