NNB: An efficient nearest neighbor search method for hierarchical clustering on large datasets

Wei Zhang, Gongxuan Zhang, Yongli Wang, Zhaomeng Zhu, Tao Li
{"title":"NNB: An efficient nearest neighbor search method for hierarchical clustering on large datasets","authors":"Wei Zhang, Gongxuan Zhang, Yongli Wang, Zhaomeng Zhu, Tao Li","doi":"10.1109/ICOSC.2015.7050840","DOIUrl":null,"url":null,"abstract":"Nearest neighbor search is a key technique used in hierarchical clustering. The time complexity of standard agglomerative hierarchical clustering is O(n3), while the time complexity of more advanced hierarchical clustering algorithms (such as nearest neighbor chain) is O(n2). This paper presents a new nearest neighbor search method called nearest neighbor boundary(NNB), which first divides a large dataset into independent subsets and then finds nearest neighbor of each point in the subsets. When NNB is used, the time complexity of hierarchical clustering can be reduced to O(n log2n). Based on NNB, we propose a fast hierarchical clustering algorithm called nearest-neighbor boundary clustering(NBC), and the proposed algorithm can also be adapted to the parallel and distributed computing frameworks. The experimental results demonstrate that our proposal algorithm is practical for large datasets.","PeriodicalId":126701,"journal":{"name":"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSC.2015.7050840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Nearest neighbor search is a key technique used in hierarchical clustering. The time complexity of standard agglomerative hierarchical clustering is O(n3), while the time complexity of more advanced hierarchical clustering algorithms (such as nearest neighbor chain) is O(n2). This paper presents a new nearest neighbor search method called nearest neighbor boundary(NNB), which first divides a large dataset into independent subsets and then finds nearest neighbor of each point in the subsets. When NNB is used, the time complexity of hierarchical clustering can be reduced to O(n log2n). Based on NNB, we propose a fast hierarchical clustering algorithm called nearest-neighbor boundary clustering(NBC), and the proposed algorithm can also be adapted to the parallel and distributed computing frameworks. The experimental results demonstrate that our proposal algorithm is practical for large datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NNB:一种高效的大数据集分层聚类的最近邻搜索方法
最近邻搜索是分层聚类中的一项关键技术。标准聚类层次聚类的时间复杂度为O(n3),而更高级的层次聚类算法(如最近邻链)的时间复杂度为O(n2)。本文提出了一种新的最近邻搜索方法,称为最近邻边界(NNB),该方法首先将大型数据集划分为独立的子集,然后找到子集中每个点的最近邻。当使用NNB时,分层聚类的时间复杂度可以降低到O(n log2n)。在NNB的基础上,提出了一种快速的分层聚类算法——最近邻边界聚类(NBC),该算法还能适应并行和分布式计算框架。实验结果表明,该算法对于大型数据集是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NNB: An efficient nearest neighbor search method for hierarchical clustering on large datasets Aggregating financial services data without assumptions: A semantic data reference architecture Reducing search space for Web Service ranking using semantic logs and Semantic FP-Tree based association rule mining An approximation of betweenness centrality for Social Networks Performance analysis of Ensemble methods on Twitter sentiment analysis using NLP techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1