A View Invariant Human Action Recognition System for Noisy Inputs

Joo Wang Kim, J. Hernandez, Richard Cobos, Ricardo Palacios, Andres G. Abad
{"title":"A View Invariant Human Action Recognition System for Noisy Inputs","authors":"Joo Wang Kim, J. Hernandez, Richard Cobos, Ricardo Palacios, Andres G. Abad","doi":"10.1109/CRV55824.2022.00017","DOIUrl":null,"url":null,"abstract":"We propose a skeleton-based Human Action Recognition (HAR) system, robust to both noisy inputs and perspective variation. This system receives RGB videos as input and consists of three modules: (M1) 2D Key-Points Estimation module, (M2) Robustness module, and (M3) Action Classification module; of which M2 is our main contribution. This module uses pre-trained 3D pose estimator and pose refinement networks to handle noisy information including missing points, and uses rotations of the 3D poses to add robustness to camera view-point variation. To evaluate our approach, we carried out comparison experiments between models trained with M2 and without it. These experiments were conducted on the UESTC view-varying dataset, on the i3DPost multi-view human action dataset and on a Boxing Actions dataset, created by us. Our system achieved positive results, improving the accuracy by 24%, 3% and 11% on each dataset, respectively. On the UESTC dataset, our method achieves the new state of the art for the cross-view evaluation protocols.","PeriodicalId":131142,"journal":{"name":"2022 19th Conference on Robots and Vision (CRV)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 19th Conference on Robots and Vision (CRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV55824.2022.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a skeleton-based Human Action Recognition (HAR) system, robust to both noisy inputs and perspective variation. This system receives RGB videos as input and consists of three modules: (M1) 2D Key-Points Estimation module, (M2) Robustness module, and (M3) Action Classification module; of which M2 is our main contribution. This module uses pre-trained 3D pose estimator and pose refinement networks to handle noisy information including missing points, and uses rotations of the 3D poses to add robustness to camera view-point variation. To evaluate our approach, we carried out comparison experiments between models trained with M2 and without it. These experiments were conducted on the UESTC view-varying dataset, on the i3DPost multi-view human action dataset and on a Boxing Actions dataset, created by us. Our system achieved positive results, improving the accuracy by 24%, 3% and 11% on each dataset, respectively. On the UESTC dataset, our method achieves the new state of the art for the cross-view evaluation protocols.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于噪声输入的视觉不变人体动作识别系统
我们提出了一种基于骨骼的人体动作识别(HAR)系统,该系统对噪声输入和视角变化都具有鲁棒性。该系统以RGB视频为输入,由三个模块组成:(M1)二维关键点估计模块,(M2)鲁棒性模块,(M3)动作分类模块;其中M2是我们的主要贡献。该模块使用预训练的3D姿态估计器和姿态细化网络来处理包括缺失点在内的噪声信息,并使用3D姿态的旋转来增加相机视点变化的鲁棒性。为了评估我们的方法,我们在使用M2和不使用M2训练的模型之间进行了比较实验。这些实验是在我们创建的UESTC视图变化数据集,i3DPost多视图人体动作数据集和拳击动作数据集上进行的。我们的系统取得了积极的结果,在每个数据集上分别提高了24%,3%和11%的准确率。在UESTC数据集上,我们的方法实现了跨视图评估协议的新状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A View Invariant Human Action Recognition System for Noisy Inputs TemporalNet: Real-time 2D-3D Video Object Detection Occluded Text Detection and Recognition in the Wild Anomaly Detection with Adversarially Learned Perturbations of Latent Space Occlusion-Aware Self-Supervised Stereo Matching with Confidence Guided Raw Disparity Fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1