Sparse representation-based super-resolution for diffusion weighted images

M. Afzali, E. Fatemizadeh, H. Soltanian-Zadeh
{"title":"Sparse representation-based super-resolution for diffusion weighted images","authors":"M. Afzali, E. Fatemizadeh, H. Soltanian-Zadeh","doi":"10.1109/ICBME.2014.7043885","DOIUrl":null,"url":null,"abstract":"Diffusion weighted imaging (DWI) is a non-invasive method for investigating the brain white matter structure. It can be used to evaluate fiber bundles in the brain. However, clinical acquisitions are often low resolution. This paper proposes a method for improving the resolution using sparse representation. In this method a non-diffusion weighted image (bO) is utilized to learn the patches and then diffusion weighted images are reconstructed based on the trained dictionary. Our method is compared with bilinear, nearest neighbor and bicubic interpolation methods. The proposed method shows improvement in terms of Peak Signal-to-Noise Ratio (PSNR) and Structural SIMilarity (SSIM).","PeriodicalId":434822,"journal":{"name":"2014 21th Iranian Conference on Biomedical Engineering (ICBME)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 21th Iranian Conference on Biomedical Engineering (ICBME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBME.2014.7043885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Diffusion weighted imaging (DWI) is a non-invasive method for investigating the brain white matter structure. It can be used to evaluate fiber bundles in the brain. However, clinical acquisitions are often low resolution. This paper proposes a method for improving the resolution using sparse representation. In this method a non-diffusion weighted image (bO) is utilized to learn the patches and then diffusion weighted images are reconstructed based on the trained dictionary. Our method is compared with bilinear, nearest neighbor and bicubic interpolation methods. The proposed method shows improvement in terms of Peak Signal-to-Noise Ratio (PSNR) and Structural SIMilarity (SSIM).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于稀疏表示的扩散加权图像超分辨率
弥散加权成像(DWI)是一种研究脑白质结构的无创方法。它可以用来评估大脑中的纤维束。然而,临床收购往往是低分辨率。本文提出了一种利用稀疏表示提高分辨率的方法。该方法利用非扩散加权图像(bO)学习斑块,然后基于训练好的字典重构扩散加权图像。并与双线性、最近邻和双三次插值方法进行了比较。该方法在峰值信噪比(PSNR)和结构相似度(SSIM)方面都有改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A time-delay parallel cascade identification system for predicting jaw movements Automated decomposition of needle EMG signal using STFT and wavelet transforms Sparse representation-based super-resolution for diffusion weighted images Investigation of Brain Default Network's activation in autism spectrum disorders using Group Independent Component Analysis Pragmatic modeling of chaotic dynamical systems through artificial neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1