Coordinate-RNN for error correction on numerical weather prediction

Chan-Jik Yu, Heewoong Ahn, Junhee Seok
{"title":"Coordinate-RNN for error correction on numerical weather prediction","authors":"Chan-Jik Yu, Heewoong Ahn, Junhee Seok","doi":"10.23919/ELINFOCOM.2018.8330699","DOIUrl":null,"url":null,"abstract":"In this work, we present a coordinate-based Recurrent Neural Networks (RNN) for error correction on the Numerical Weather Prediction (NWP) model. We show that the output errors on NWP have spatial and temporal properties, which is collinear with meteorological data. The correction model reflects these characteristics by encompassing the latitude and longitude coordinates as direct inputs to RNN. Examined with the NWP data in Korea, the proposed RNN-based correction reduces the humidity prediction errors by 4.8% and 4.2% compared to the predictions without correction and with simple linear correction, respectively. The overall result highlights the promise of our approach.","PeriodicalId":413646,"journal":{"name":"2018 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ELINFOCOM.2018.8330699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this work, we present a coordinate-based Recurrent Neural Networks (RNN) for error correction on the Numerical Weather Prediction (NWP) model. We show that the output errors on NWP have spatial and temporal properties, which is collinear with meteorological data. The correction model reflects these characteristics by encompassing the latitude and longitude coordinates as direct inputs to RNN. Examined with the NWP data in Korea, the proposed RNN-based correction reduces the humidity prediction errors by 4.8% and 4.2% compared to the predictions without correction and with simple linear correction, respectively. The overall result highlights the promise of our approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数值天气预报误差校正的坐标- rnn
在这项工作中,我们提出了一种基于坐标的递归神经网络(RNN)用于数值天气预报(NWP)模型的误差校正。结果表明,NWP的输出误差具有时空特性,且与气象数据共线性。修正模型通过将纬度和经度坐标作为RNN的直接输入来反映这些特征。通过对韩国NWP数据的检验,与不校正和简单线性校正相比,提出的基于rnn的校正方法将湿度预测误差分别降低了4.8%和4.2%。总体结果突出了我们的方法的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sensing voltage compensation circuit for low-power dram bit-line sense amplifier Coordinate-RNN for error correction on numerical weather prediction Pulsed PMOS sense amplifier for high speed single-ended SRAM An estimation of road surface conditions using participatory sensing Cycle-accurate full system simulation for CPU+GPU+HBM computing platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1