Distributed k-dominant skyline queries

Asif Zaman, Md. Mahbubul Islam, Md. Anisuzzaman Siddique, Y. Morimoto
{"title":"Distributed k-dominant skyline queries","authors":"Asif Zaman, Md. Mahbubul Islam, Md. Anisuzzaman Siddique, Y. Morimoto","doi":"10.1109/ICCITECHN.2012.6509757","DOIUrl":null,"url":null,"abstract":"Skyline query function is one of promising information filtering methods. Skyline queries return a set of interesting data objects that are not dominated by any other object on all dimensions. Therefore in this paper, we consider k-dominant skyline computation when the underlying dataset is partitioned into geographically distant computing core that are connected to the coordinator (server). The existing solutions are not suitable for our problem, because they are restricted to centralized query processors, limiting scalability and imposing a single point of failure. In this paper, we developed a distributed k-dominant skyline queries (DKSQ) computation algorithm. Where the coordinator iteratively transmits data to each computing core. Computing core is able to prune a large amount of local data, which otherwise would need to be sent to the coordinator. Extensive performance study shows that proposed algorithm is efficient and robust to different data distributions.","PeriodicalId":127060,"journal":{"name":"2012 15th International Conference on Computer and Information Technology (ICCIT)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 15th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2012.6509757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Skyline query function is one of promising information filtering methods. Skyline queries return a set of interesting data objects that are not dominated by any other object on all dimensions. Therefore in this paper, we consider k-dominant skyline computation when the underlying dataset is partitioned into geographically distant computing core that are connected to the coordinator (server). The existing solutions are not suitable for our problem, because they are restricted to centralized query processors, limiting scalability and imposing a single point of failure. In this paper, we developed a distributed k-dominant skyline queries (DKSQ) computation algorithm. Where the coordinator iteratively transmits data to each computing core. Computing core is able to prune a large amount of local data, which otherwise would need to be sent to the coordinator. Extensive performance study shows that proposed algorithm is efficient and robust to different data distributions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分布式k主导天际线查询
Skyline查询函数是一种很有前途的信息过滤方法。Skyline查询返回一组有趣的数据对象,这些对象在所有维度上都不受任何其他对象的支配。因此,在本文中,当底层数据集被划分为连接到协调器(服务器)的地理上遥远的计算核心时,我们考虑k-dominant skyline计算。现有的解决方案不适合我们的问题,因为它们仅限于集中的查询处理器,限制了可伸缩性并造成单点故障。在本文中,我们开发了一种分布式k-显性天际线查询(DKSQ)计算算法。其中协调器迭代地将数据传输到每个计算核心。计算核心能够修剪大量的本地数据,否则这些数据将需要发送给协调器。大量的性能研究表明,该算法对不同的数据分布具有良好的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Noise reduction algorithm for LS channel estimation in OFDM system Composite pattern matching in time series Android mobile application: Remote monitoring of blood pressure Affective mapping of EEG during executive function tasks Distributed k-dominant skyline queries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1