{"title":"The Role of Engineering Critical Assessment in the Life Extension of Risers Connected to Floating Systems","authors":"B. Mekha, R. Gordon","doi":"10.1115/omae2020-19085","DOIUrl":null,"url":null,"abstract":"\n As many offshore production systems approach the end of their original Design Life, Operators are faced with the choice of either decommissioning or demonstrating that the original Design Life can be extended (Life Extension). Life extension requires the Operator to perform detailed engineering analyses to verify that the system can be operated safely over the period of Life Extension. In many cases this requires detailed fatigue analysis and inspection programs to demonstrate that original fabrication flaws or fatigue cracks that may have existed during the welding of the riser joints or initiated over the original Design Life will not grow to a critical size resulting in failure.\n Engineering Critical Assessment (ECA) is now routinely applied in the design and fabrication of new offshore riser systems to develop girth weld flaw acceptance criteria. The resulting flaw acceptance criteria ensure that fabrication flaws will not extend to a critical size over the Design Life and thus the riser still meet its calculated fatigue life. Although ECA procedures for new construction are well established and standard practices have been adopted throughout the industry, ECA procedures for Life Extension have not yet evolved to the same level of acceptance.\n This paper will review specific issues associated with applying ECA to support Life Extension of offshore Riser Systems. The paper will provide the overall ECA philosophy and methodology for life extension to be adopted for the historical (hindcast or Phase 1) and future (forecast or Phase 2) analysis of the risers. Some thoughts will also be given to the approach implemented to take advantage of the actual weld fabrication data with the focus on the fatigue critical sections of the risers. Finally, the paper will address the requirements for riser in-situ inspection and how the results could be analyzed and applied to the life extension analysis in conjunction with the ECA analysis.","PeriodicalId":240325,"journal":{"name":"Volume 4: Pipelines, Risers, and Subsea Systems","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 4: Pipelines, Risers, and Subsea Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2020-19085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
As many offshore production systems approach the end of their original Design Life, Operators are faced with the choice of either decommissioning or demonstrating that the original Design Life can be extended (Life Extension). Life extension requires the Operator to perform detailed engineering analyses to verify that the system can be operated safely over the period of Life Extension. In many cases this requires detailed fatigue analysis and inspection programs to demonstrate that original fabrication flaws or fatigue cracks that may have existed during the welding of the riser joints or initiated over the original Design Life will not grow to a critical size resulting in failure.
Engineering Critical Assessment (ECA) is now routinely applied in the design and fabrication of new offshore riser systems to develop girth weld flaw acceptance criteria. The resulting flaw acceptance criteria ensure that fabrication flaws will not extend to a critical size over the Design Life and thus the riser still meet its calculated fatigue life. Although ECA procedures for new construction are well established and standard practices have been adopted throughout the industry, ECA procedures for Life Extension have not yet evolved to the same level of acceptance.
This paper will review specific issues associated with applying ECA to support Life Extension of offshore Riser Systems. The paper will provide the overall ECA philosophy and methodology for life extension to be adopted for the historical (hindcast or Phase 1) and future (forecast or Phase 2) analysis of the risers. Some thoughts will also be given to the approach implemented to take advantage of the actual weld fabrication data with the focus on the fatigue critical sections of the risers. Finally, the paper will address the requirements for riser in-situ inspection and how the results could be analyzed and applied to the life extension analysis in conjunction with the ECA analysis.