A New k-means Based Clustering Algorithm in Aspect Mining

G. Czibula, G. Moldovan
{"title":"A New k-means Based Clustering Algorithm in Aspect Mining","authors":"G. Czibula, G. Moldovan","doi":"10.1109/SYNASC.2006.5","DOIUrl":null,"url":null,"abstract":"Clustering is a division of data into groups of similar objects. Aspect mining is a process that tries to identify cross-cutting concerns in existing software systems. The goal is to refactor the existing systems to use aspect oriented programming, in order to make them easier to maintain and to evolve. This paper aims at presenting a new k-means based clustering algorithm used in aspect mining. Clustering is used in order to identify crosscutting concerns. We propose some quality measures in order to evaluate the results both from the clustering point of view and the aspect mining point of view, and we also report two case studies","PeriodicalId":309740,"journal":{"name":"2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2006-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Eighth International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2006.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

Clustering is a division of data into groups of similar objects. Aspect mining is a process that tries to identify cross-cutting concerns in existing software systems. The goal is to refactor the existing systems to use aspect oriented programming, in order to make them easier to maintain and to evolve. This paper aims at presenting a new k-means based clustering algorithm used in aspect mining. Clustering is used in order to identify crosscutting concerns. We propose some quality measures in order to evaluate the results both from the clustering point of view and the aspect mining point of view, and we also report two case studies
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
方面挖掘中一种新的基于k均值的聚类算法
聚类是将数据分成相似对象的组。方面挖掘是一个试图识别现有软件系统中横切关注点的过程。其目标是重构现有的系统,以使用面向方面的编程,以便使它们更容易维护和发展。本文提出了一种新的基于k均值的聚类算法,用于方面挖掘。使用聚类是为了识别横切关注点。为了从聚类和方面挖掘的角度对结果进行评价,我们提出了一些质量度量,并报告了两个案例研究
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Algorithms and Results in Content-Based Visual Query of the Image Databases Resulting from Dicom Files A New k-means Based Clustering Algorithm in Aspect Mining A Framework for Scheduling Image Processing Applications in MedioGRID HTML Pattern Generator--Automatic Data Extraction from Web Pages Incremental Deterministic Planning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1