Safety-Critical Path Planning of Autonomous Surface Vehicles Based on Rapidly-Exploring Random Tree Algorithm and High Order Control Barrier Functions

Yihe Li, Zhouhua Peng, Lu Liu, H. Wang, Nan Gu, Anqing Wang, Dan Wang
{"title":"Safety-Critical Path Planning of Autonomous Surface Vehicles Based on Rapidly-Exploring Random Tree Algorithm and High Order Control Barrier Functions","authors":"Yihe Li, Zhouhua Peng, Lu Liu, H. Wang, Nan Gu, Anqing Wang, Dan Wang","doi":"10.1109/CACRE58689.2023.10208636","DOIUrl":null,"url":null,"abstract":"This paper presents a maritime path planning algorithm for autonomous surface vehicles (ASVs). A improved RRT algorithm for generating sample nodes is proposed. The HOCBF-RRT algorithm leverages high order control barrier functions (HOCBFs) to take into account the dynamics of the ASV and produce a path that prioritizes safety. In addition, to complete the path optimization, combined with control Lyapunov functions (CLFs), the expansion to the target point is accelerated and the planning time is reduced. In simulation experiments, it is observed that the HOCBF-RRT algorithm and HOCBF-CLF-RRT algorithm offer improvements over traditional RRT algorithms. Specifically, the HOCBF-RRT algorithm is found to enhance the smoothness of paths, while the HOCBF-CLF-RRT algorithm effectively optimizes the expansion of the random tree towards the target point.","PeriodicalId":447007,"journal":{"name":"2023 8th International Conference on Automation, Control and Robotics Engineering (CACRE)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 8th International Conference on Automation, Control and Robotics Engineering (CACRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CACRE58689.2023.10208636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a maritime path planning algorithm for autonomous surface vehicles (ASVs). A improved RRT algorithm for generating sample nodes is proposed. The HOCBF-RRT algorithm leverages high order control barrier functions (HOCBFs) to take into account the dynamics of the ASV and produce a path that prioritizes safety. In addition, to complete the path optimization, combined with control Lyapunov functions (CLFs), the expansion to the target point is accelerated and the planning time is reduced. In simulation experiments, it is observed that the HOCBF-RRT algorithm and HOCBF-CLF-RRT algorithm offer improvements over traditional RRT algorithms. Specifically, the HOCBF-RRT algorithm is found to enhance the smoothness of paths, while the HOCBF-CLF-RRT algorithm effectively optimizes the expansion of the random tree towards the target point.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于快速探索随机树算法和高阶控制障碍函数的自动驾驶地面车辆安全关键路径规划
提出了一种自动水面车辆(asv)海上路径规划算法。提出了一种改进的RRT算法,用于生成样本节点。HOCBF-RRT算法利用高阶控制障碍函数(hocbf)来考虑ASV的动态,并产生优先考虑安全的路径。此外,为了完成路径优化,结合控制Lyapunov函数(clf),加速了向目标点的扩展,减少了规划时间。在仿真实验中,HOCBF-RRT算法和HOCBF-CLF-RRT算法比传统的RRT算法有了改进。具体而言,HOCBF-RRT算法增强了路径的平滑性,而HOCBF-CLF-RRT算法有效地优化了随机树向目标点的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Continual Contrastive Anomaly Detection under Natural Data Distribution Shifts Safety-Critical Path Planning of Autonomous Surface Vehicles Based on Rapidly-Exploring Random Tree Algorithm and High Order Control Barrier Functions An Integrated Calibration Scheme for Attitude Benchmark of Micro-nano Satellites and Its Experiments Based on In-Orbit Data Developing an Untethered Soft Robot for Finger Rehabilitation 3D Scanning Vision System Design and Implementation in Large Shipbuilding Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1