Oil reservoir production forecasting with uncertainty estimation using genetic algorithms

H. Soleng
{"title":"Oil reservoir production forecasting with uncertainty estimation using genetic algorithms","authors":"H. Soleng","doi":"10.1109/CEC.1999.782574","DOIUrl":null,"url":null,"abstract":"A genetic algorithm is applied to the problem of conditioning the petrophysical rock properties of a reservoir model on historic production data. This is a difficult optimization problem where each evaluation of the objective function implies a flow simulation of the whole reservoir. Due to the high computing cost of this function, it is imperative to make use of an efficient optimization method to find a near optimal solution using as few iterations as possible. We have applied a genetic algorithm to this problem. Ten independent runs are used to give a prediction with an uncertainty estimate for the total future oil production using two different production strategies.","PeriodicalId":292523,"journal":{"name":"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.1999.782574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

A genetic algorithm is applied to the problem of conditioning the petrophysical rock properties of a reservoir model on historic production data. This is a difficult optimization problem where each evaluation of the objective function implies a flow simulation of the whole reservoir. Due to the high computing cost of this function, it is imperative to make use of an efficient optimization method to find a near optimal solution using as few iterations as possible. We have applied a genetic algorithm to this problem. Ten independent runs are used to give a prediction with an uncertainty estimate for the total future oil production using two different production strategies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于遗传算法的不确定性估计油藏产量预测
将遗传算法应用于根据历史生产数据调整储层模型岩石物理性质的问题。这是一个困难的优化问题,其中每个目标函数的评价都意味着整个水库的流动模拟。由于该函数的计算成本很高,因此必须使用一种高效的优化方法,以尽可能少的迭代找到接近最优解。我们用遗传算法来解决这个问题。采用两种不同的生产策略,使用10个独立的井趟对未来的总产油量进行了不确定性估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of a characteristic bimodal convergence-time/mutation-rate feature in evolutionary search Classifier systems evolving multi-agent system with distributed elitism A unified model of non-panmictic population structures in evolutionary algorithms Control of autonomous robots using fuzzy logic controllers tuned by genetic algorithms Oil reservoir production forecasting with uncertainty estimation using genetic algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1