An open tool to compute stochastic bounds on steady-state distributions and rewards

J. Fourneau, M. Coz, N. Pekergin, F. Quessette
{"title":"An open tool to compute stochastic bounds on steady-state distributions and rewards","authors":"J. Fourneau, M. Coz, N. Pekergin, F. Quessette","doi":"10.1109/MASCOT.2003.1240661","DOIUrl":null,"url":null,"abstract":"We present X-Bounds, a new tool to implement a methodology based on stochastic ordering, algorithmic derivation of simpler Markov chains and numerical analysis of these chains. The performance indices defined by reward functions are stochastically bounded by reward functions computed on much simpler or smaller Markov chains obtained after aggregation or simplification. This leads to an important reduction on numerical complexity. Typically, chains are ten times smaller and the accuracy may be good enough.","PeriodicalId":344411,"journal":{"name":"11th IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer Telecommunications Systems, 2003. MASCOTS 2003.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"11th IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer Telecommunications Systems, 2003. MASCOTS 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASCOT.2003.1240661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

We present X-Bounds, a new tool to implement a methodology based on stochastic ordering, algorithmic derivation of simpler Markov chains and numerical analysis of these chains. The performance indices defined by reward functions are stochastically bounded by reward functions computed on much simpler or smaller Markov chains obtained after aggregation or simplification. This leads to an important reduction on numerical complexity. Typically, chains are ten times smaller and the accuracy may be good enough.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个用于计算稳态分布和奖励的随机边界的开放工具
我们提出了X-Bounds,一个新的工具来实现基于随机排序的方法,简单马尔可夫链的算法推导和这些链的数值分析。由奖励函数定义的绩效指标随机地由在聚合或化简后得到的更简单或更小的马尔可夫链上计算的奖励函数限定。这大大降低了数值复杂度。通常,链条要小十倍,精度可能足够好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An open tool to compute stochastic bounds on steady-state distributions and rewards Twotowers 3.0: enhancing usability Analysis of design alternatives for reverse proxy cache providers MQNA - Markovian queueing networks analyser Zone-based shortest positioning time first scheduling for MEMS-based storage devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1