Data Importance-Assisted Multi-User Scheduling in MIMO Edge Learning Systems

Hongqing Huang, Peiran Wu, Junhui Zhao, M. Xia
{"title":"Data Importance-Assisted Multi-User Scheduling in MIMO Edge Learning Systems","authors":"Hongqing Huang, Peiran Wu, Junhui Zhao, M. Xia","doi":"10.1109/ICCCWorkshops55477.2022.9896711","DOIUrl":null,"url":null,"abstract":"With the wide development of intelligent communication systems, efficient data transmission is critical to fast edge learning in multi-user multiple-input multiple-output (MIMO) systems since the data acquisition from massive edge devices has become a bottleneck. To cope with the mismatch between the empirical probability of the transmitted data and the expected one, this paper first proposes to quantify data importance using the Kullback-Leibler divergence. Then, we design a multi-user scheduling criterion that combines the channel state information and data importance indicators, followed by an iterative multi-user scheduling algorithm. Finally, experimental results demon-strate that the proposed multi-user scheduling strategy signifi-cantly improves the learning efficiency and the test accuracy of edge learning systems.","PeriodicalId":148869,"journal":{"name":"2022 IEEE/CIC International Conference on Communications in China (ICCC Workshops)","volume":"247 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CIC International Conference on Communications in China (ICCC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCWorkshops55477.2022.9896711","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the wide development of intelligent communication systems, efficient data transmission is critical to fast edge learning in multi-user multiple-input multiple-output (MIMO) systems since the data acquisition from massive edge devices has become a bottleneck. To cope with the mismatch between the empirical probability of the transmitted data and the expected one, this paper first proposes to quantify data importance using the Kullback-Leibler divergence. Then, we design a multi-user scheduling criterion that combines the channel state information and data importance indicators, followed by an iterative multi-user scheduling algorithm. Finally, experimental results demon-strate that the proposed multi-user scheduling strategy signifi-cantly improves the learning efficiency and the test accuracy of edge learning systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MIMO边缘学习系统中数据重要性辅助的多用户调度
随着智能通信系统的广泛发展,高效的数据传输是多用户多输入多输出(MIMO)系统快速边缘学习的关键,大量边缘设备的数据采集已成为瓶颈。为了解决传输数据的经验概率与期望概率不匹配的问题,本文首先提出利用Kullback-Leibler散度来量化数据的重要性。然后,设计了信道状态信息和数据重要性指标相结合的多用户调度准则,并设计了迭代多用户调度算法。实验结果表明,所提出的多用户调度策略显著提高了边缘学习系统的学习效率和测试精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data Importance-Assisted Multi-User Scheduling in MIMO Edge Learning Systems Artificial Intelligence Service by Satellite Networks based on Ensemble Learning with Cloud-Edge-End Integration CRS interference handling on NR and LTE overlapping spectrum: Analysis on performance and standard impact Energy Harvesting-Based UAV-Assisted Vehicular Edge Computing: A Deep Reinforcement Learning Approach How Can Reconfigurable Intelligent Surfaces Drive 5G-Advanced Wireless Networks: A Standardization Perspective
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1