MAC Protocol Identification Using Convolutional Neural Networks

Yu Zhou, Shengliang Peng, Yudong Yao
{"title":"MAC Protocol Identification Using Convolutional Neural Networks","authors":"Yu Zhou, Shengliang Peng, Yudong Yao","doi":"10.1109/WOCC48579.2020.9114930","DOIUrl":null,"url":null,"abstract":"Making network nodes aware of the spectrum parameters can help to improve the spectrum utilization and network efficiency. To achieve such goals, machine learning (ML) and deep learning (DL) have been utilized to identify spectrum parameters, such as modulation formats, power levels, medium access control (MAC) protocols, etc. This paper explores MAC protocol identification using ML and DL in additive white Gaussian noise (AWGN) and Rayleigh fading environments. We transform the received signals into spectrogram and utilize convolutional neural networks (CNN) to recognize the MAC protocols. Experimentation results demonstrate the effectiveness in MAC protocol identification using ML and DL algorithms.","PeriodicalId":187607,"journal":{"name":"2020 29th Wireless and Optical Communications Conference (WOCC)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 29th Wireless and Optical Communications Conference (WOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOCC48579.2020.9114930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Making network nodes aware of the spectrum parameters can help to improve the spectrum utilization and network efficiency. To achieve such goals, machine learning (ML) and deep learning (DL) have been utilized to identify spectrum parameters, such as modulation formats, power levels, medium access control (MAC) protocols, etc. This paper explores MAC protocol identification using ML and DL in additive white Gaussian noise (AWGN) and Rayleigh fading environments. We transform the received signals into spectrogram and utilize convolutional neural networks (CNN) to recognize the MAC protocols. Experimentation results demonstrate the effectiveness in MAC protocol identification using ML and DL algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用卷积神经网络识别MAC协议
让网络节点了解频谱参数有助于提高频谱利用率和网络效率。为了实现这一目标,机器学习(ML)和深度学习(DL)已被用于识别频谱参数,如调制格式、功率水平、介质访问控制(MAC)协议等。本文研究了在加性高斯白噪声(AWGN)和瑞利衰落环境下使用ML和DL识别MAC协议。我们将接收到的信号转换成频谱图,并利用卷积神经网络(CNN)来识别MAC协议。实验结果证明了ML和DL算法在MAC协议识别中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[Copyright notice] MAC Protocol Identification Using Convolutional Neural Networks Efficient Methods and Architectures for Mean and Variance Estimations of QAM Symbols A Convolutional Neural Network Approach to Improving Network Visibility Data-driven Surplus Material Prediction in Steel Coil Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1