Deep learning with shallow architecture for image classification

Asma ElAdel, R. Ejbali, M. Zaied, C. Amar
{"title":"Deep learning with shallow architecture for image classification","authors":"Asma ElAdel, R. Ejbali, M. Zaied, C. Amar","doi":"10.1109/HPCSim.2015.7237069","DOIUrl":null,"url":null,"abstract":"This paper presents a new scheme for image classification. The proposed scheme depicts a shallow architecture of Convolutional Neural Network (CNN) providing deep learning: For each image, we calculated the connection weights between the input layer and the hidden layer based on MultiResolution Analysis (MRA) at different levels of abstraction. Then, we selected the best features, representing well each class of images, with their corresponding weights using Adaboost algorithm. These weights are used as the connection weights between the hidden layer and the output layer, and will be used in the test phase to classify a given query image. The proposed approach was tested on different datasets and the obtained results prove the efficiency and the speed of the proposed approach.","PeriodicalId":134009,"journal":{"name":"2015 International Conference on High Performance Computing & Simulation (HPCS)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCSim.2015.7237069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper presents a new scheme for image classification. The proposed scheme depicts a shallow architecture of Convolutional Neural Network (CNN) providing deep learning: For each image, we calculated the connection weights between the input layer and the hidden layer based on MultiResolution Analysis (MRA) at different levels of abstraction. Then, we selected the best features, representing well each class of images, with their corresponding weights using Adaboost algorithm. These weights are used as the connection weights between the hidden layer and the output layer, and will be used in the test phase to classify a given query image. The proposed approach was tested on different datasets and the obtained results prove the efficiency and the speed of the proposed approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于浅结构的深度学习图像分类
提出了一种新的图像分类方案。该方案描述了一个提供深度学习的卷积神经网络(CNN)的浅层架构:对于每张图像,我们基于不同抽象级别的多分辨率分析(MRA)计算输入层和隐藏层之间的连接权重。然后,我们使用Adaboost算法选择代表每一类图像的最佳特征及其相应的权重。这些权重用作隐藏层和输出层之间的连接权重,并将在测试阶段用于对给定的查询图像进行分类。在不同的数据集上进行了测试,得到的结果证明了该方法的效率和速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transient performance evaluation of cloud computing applications and dynamic resource control in large-scale distributed systems A security framework for population-scale genomics analysis Deep learning with shallow architecture for image classification A new reality requiers new ecosystems Investigation of DVFS based dynamic reliability management for chip multiprocessors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1