Emotion Analysis from Facial Expressions Using Convolutional Neural Networks

Muhammed Coskun Irmak, Mehmet Bilge Han Tas, Sedat Turan, A. Hasiloglu
{"title":"Emotion Analysis from Facial Expressions Using Convolutional Neural Networks","authors":"Muhammed Coskun Irmak, Mehmet Bilge Han Tas, Sedat Turan, A. Hasiloglu","doi":"10.1109/UBMK52708.2021.9558917","DOIUrl":null,"url":null,"abstract":"In order to better understand human behavior, the emotional content of human facial expressions needs to be accurately analyzed and interpreted. While the perception of faces and facial expressions is a natural skill for humans, it still poses great challenges for computer systems. These difficulties result from the non-uniformity of the human face and differences in conditions such as lighting, shadows, face pose and orientation. Deep learning models, especially Convolutional Neural Networks (CNNs), have great potential to deal with these challenges due to their powerful automatic feature extraction and computational efficiency. In this study, a CNN model is proposed to classify seven different emotions (angry, disgust, fear, happy, sadness, surprise and neutral) using the FER-2013 dataset. With the proposed model, 70.62% accuracy on the training data and 70% on the test data has been achieved. The loss value was found to be 0.80 at the training stage and 0.86 at the testing stage.","PeriodicalId":106516,"journal":{"name":"2021 6th International Conference on Computer Science and Engineering (UBMK)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 6th International Conference on Computer Science and Engineering (UBMK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UBMK52708.2021.9558917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In order to better understand human behavior, the emotional content of human facial expressions needs to be accurately analyzed and interpreted. While the perception of faces and facial expressions is a natural skill for humans, it still poses great challenges for computer systems. These difficulties result from the non-uniformity of the human face and differences in conditions such as lighting, shadows, face pose and orientation. Deep learning models, especially Convolutional Neural Networks (CNNs), have great potential to deal with these challenges due to their powerful automatic feature extraction and computational efficiency. In this study, a CNN model is proposed to classify seven different emotions (angry, disgust, fear, happy, sadness, surprise and neutral) using the FER-2013 dataset. With the proposed model, 70.62% accuracy on the training data and 70% on the test data has been achieved. The loss value was found to be 0.80 at the training stage and 0.86 at the testing stage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络的面部表情情绪分析
为了更好地理解人类的行为,需要对人类面部表情的情感内容进行准确的分析和解读。虽然对面孔和面部表情的感知是人类的一种自然技能,但它仍然给计算机系统带来了巨大的挑战。这些困难是由于人脸的不均匀性和光照、阴影、面部姿势和方向等条件的差异造成的。深度学习模型,特别是卷积神经网络(cnn),由于其强大的自动特征提取和计算效率,在应对这些挑战方面具有很大的潜力。在本研究中,提出了一个CNN模型,使用FER-2013数据集对七种不同的情绪(愤怒、厌恶、恐惧、快乐、悲伤、惊讶和中性)进行分类。该模型对训练数据的准确率达到70.62%,对测试数据的准确率达到70%。在训练阶段的损失值为0.80,在测试阶段的损失值为0.86。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Emotion Analysis from Facial Expressions Using Convolutional Neural Networks Early Stage Fault Prediction via Inter-Project Rule Transfer Semantic Similarity Comparison of Word Representation Methods in the Field of Health Small Object Detection and Tracking from Aerial Imagery Anomaly Detection with Deep Long Short Term Memory Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1