AL and S Methods: Two Extensions for L-Method

M. Antunes, Henrique Aguiar, D. Gomes
{"title":"AL and S Methods: Two Extensions for L-Method","authors":"M. Antunes, Henrique Aguiar, D. Gomes","doi":"10.1109/FiCloud.2019.00061","DOIUrl":null,"url":null,"abstract":"With the advent of smart IoT and M2M scenarios it becomes necessary to develop autonomous systems that optimize themselves with minimal human intervention. One possible method to achieve this is through Knee/elbow point estimation. Most of the time these points represent ideal compromises for parameters, methods and algorithms. However, estimating the knee/elbow point in curves is a challenging task. Our focus is on determining the ideal number of clusters autonomously. We analyse and discuss well-known knee/elbow estimators and two extensions based on the theoretical definition. The proposed methods (named AL and S methods) were evaluated against state-of-the-art estimators. The proposed methods are a viable stable solution for knee/elbow estimation.","PeriodicalId":268882,"journal":{"name":"2019 7th International Conference on Future Internet of Things and Cloud (FiCloud)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Conference on Future Internet of Things and Cloud (FiCloud)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FiCloud.2019.00061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

With the advent of smart IoT and M2M scenarios it becomes necessary to develop autonomous systems that optimize themselves with minimal human intervention. One possible method to achieve this is through Knee/elbow point estimation. Most of the time these points represent ideal compromises for parameters, methods and algorithms. However, estimating the knee/elbow point in curves is a challenging task. Our focus is on determining the ideal number of clusters autonomously. We analyse and discuss well-known knee/elbow estimators and two extensions based on the theoretical definition. The proposed methods (named AL and S methods) were evaluated against state-of-the-art estimators. The proposed methods are a viable stable solution for knee/elbow estimation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AL和S方法:l -方法的两种扩展
随着智能物联网和M2M场景的出现,有必要开发以最少人为干预进行自我优化的自主系统。实现这一目标的一个可能方法是通过膝盖/肘关节点估计。大多数情况下,这些点代表了参数、方法和算法的理想妥协。然而,估计弯曲中的膝盖/肘部点是一项具有挑战性的任务。我们的重点是自主确定理想的集群数量。在理论定义的基础上,对已知的膝关节/肘关节估计量及其两个扩展进行了分析和讨论。提出的方法(命名为AL和S方法)对最先进的估计器进行了评估。该方法是一种可行的、稳定的膝关节/肘关节估计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bazaar-Contract: A Smart Contract for Binding Multi-Round Bilateral Negotiations on Cloud Markets AL and S Methods: Two Extensions for L-Method Intelligent Solutions for Secure Communication and Collaboration Based on Cloud Technologies IoTSP: Thread Mesh vs Other Widely used Wireless Protocols – Comparison and use Cases Study A Framework for Distributed Denial of Service Attack Detection and Reactive Countermeasure in Software Defined Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1